EconPapers    
Economics at your fingertips  
 

Identifying the status of groundwater drought from a GRACE mascon model perspective across China during 2003–2018

Fei Wang, Hexin Lai, Yanbin Li, Kai Feng, Zezhong Zhang, Qingqing Tian, Xiaomeng Zhu and Haibo Yang

Agricultural Water Management, 2022, vol. 260, issue C

Abstract: The traditional groundwater drought monitoring method relies on the ground observation data, which is difficult to reflect the large-scale groundwater drought information. Thus, Gravity Recovery and Climate Experiment (GRACE) gravity satellite technology is applied to estimate large-scale groundwater drought condition, which can provide a new data source for drought investigation. However, the dynamic variations of GRACE-based groundwater drought were still unclear across China. In this study, the evolutions of groundwater drought were investigated from a high-resolution GRACE mass concentration (mascon) model perspective. The spatio-temporal variations and gridded trend characteristics of groundwater drought were comprehensively identified across China during 2003–2018. Subsequently, the relationships between groundwater and meteorological drought were quantitatively revealed. The results indicated that: (1) the verification results of GRACE were credible and reliable for groundwater drought evaluation; (2) the most serious groundwater drought occurred in April 2011, with an average groundwater drought index (GDI) value of –0.86; (3) the gridded drought trend characteristic showed that groundwater drought presented an upward trend during 2003–2018; and (4) the propagation dynamics from meteorological to groundwater drought were shorter in summer (5–6 months), and longer in winter (14–15 months) across China. This study sheds new viewpoints into groundwater drought variations from a perspective of high-resolution GRACE mascon model, which can also be applied in other areas.

Keywords: Groundwater drought; Meteorological drought; GRACE mascon model; Propagation dynamics; China (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037837742100528X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:260:y:2022:i:c:s037837742100528x

DOI: 10.1016/j.agwat.2021.107251

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:260:y:2022:i:c:s037837742100528x