EconPapers    
Economics at your fingertips  
 

Assessing water distribution characteristics of a variable-rate irrigation system

Xin Hui, Xueji Lin, Yue Zhao, Mengyun Xue, Yue Zhuo, Hui Guo, Yuncheng Xu and Haijun Yan

Agricultural Water Management, 2022, vol. 260, issue C

Abstract: Variable-rate irrigation (VRI) can effectively improve the irrigation efficiency. In this study, we evaluated the two key indicators, irrigation uniformity and accuracy for a three-span center pivot VRI system with the combination of two sprinkler types, i.e., the Nelson D3000 (a fixed spray plate sprinkler, FSPS) and the R3000 (a rotating spray plate sprinkler, RSPS), two sets of irrigation depths designed for four management zones (zones 1–4) of 10, 8, 15, and 20 mm and 10, 15, 20, and 25 mm, and three cycle times (CTs) of the solenoid valve of 30, 45, and 60 s, with constant-rate irrigation (CRI) as a reference. In addition, the radially affected lengths of irrigation depths in zones 1–4 under various VRI treatments were further determined. The radial (mean CUH = 90.8%) and circumferential application uniformity (mean CUH = 95.6%) as well as radial irrigation accuracy (mean NRMSE = 15.3%) of the R3000 were superior to those of D3000 under VRI. The irrigation uniformity and accuracy of each management zone were less impacted by the designed irrigation depth and CT, but more affected by the location of the management zone. The irrigation uniformity and accuracy of VRI were close to those of CRI, indicating that the VRI system tested could guarantee the same application performance as the CRI system. Changing the D3000 sprinklers to R3000 sprinklers in the VRI system effectively reduced the radially affected lengths of management zones. The radially affected lengths of D3000 under various treatments were primarily distributed from 3–6 m, whereas those of R3000 were 0–3 m. Thus, it was recommended to select RSPSs in the design of the center pivot VRI system, and the transition zone and CT in relation to R3000 sprinklers were suggested to be 0–3 m and 60 s, respectively. This research provides the recommendations for better implementation of VRI.

Keywords: Variable-rate irrigation; Center pivot irrigation system; Water application uniformity; Irrigation accuracy; Irrigation management zone (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421005539
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:260:y:2022:i:c:s0378377421005539

DOI: 10.1016/j.agwat.2021.107276

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:260:y:2022:i:c:s0378377421005539