EconPapers    
Economics at your fingertips  
 

Can organic carbon and water supplementation sustain soil moisture–carbon balance under long-term plastic mulched semiarid farmland?

Xucheng Zhang, Huizhi Hou, Yanjie Fang, Hongli Wang, Xianfeng Yu, Yifan Ma and Kangning Lei

Agricultural Water Management, 2022, vol. 260, issue C

Abstract: Plastic mulching (PM) is regarded as a promising way to increase crop production. However, its reported that plastic mulching may decrease soil organic carbon content and been unfavorable for sustainable agricultural production. Confirmation of the effects of plastic mulching on soil water and organic carbon balances in a long term, including finding efficient ways to improve these balances, is crucial for the sustainability of agricultural production in semiarid rain-fed areas. We conducted field experiment (2010–2019), with spring maize and wheat as tested crops, using four treatments of plastic mulching (PM), plastic mulching with supplementary irrigation (PMI), plastic mulching with organic fertilizer application (PMO) and without mulching (CK). The results of this 10-year field experiment showed that PM with supplementary irrigation and organic fertilizer application not only significantly increased yield and Water productivity (WP) of wheat and maize, but also had a positive effect on soil water budget. The soil water budget of PMI, PMO and PM significantly increased by 120.4%, 96.1% and 105.8% in wheat and by 149.7%, 28.2% and 53.6% in maize, compared with CK, respectively. The improved soil water condition resulted in a significant increment of yield, PMI, PMO and PM increased yield by 122.8%, 89.7% and 67.0% for wheat, by 237.8%, 183.0% and 148.4% for maize, respectively, compared with CK. The 10 years of continuous PM significantly decreased soil organic carbon content (SOC) in 0–10, 10–20, 30–50 and 50–70 cm profiles by 22.5%, 19.1%, 15.6% and 15.3% for wheat, but had no significant effect for maize. The PMO significantly increased soil organic carbon content in 0–30 cm profiles for both wheat and maize, but the soil organic carbon budgets were negative for all four treatments, the PMO accelerated soil organic carbon loss for maize but had little effect for wheat compared with PM and CK. However, PMI, PMO and PM significantly increases crop bio-carbon production, resulted in the positive total carbon budget and significantly increased by 25.0, 15.0, 11.5 Mg ha−1 in wheat and 105.1, 74.1, 74.0 Mg ha−1 in maize, respectively, as compared with CK. These results suggested that the soil organic carbon budget differed for the two crops, also affected by water or organic carbon supplementation. A more appropriate crop rotation system with organic fertilizer application should be developed, to increase crop production and soil quality under plastic mulched condition in such semiarid rain-fed areas.

Keywords: Soil organic carbon budget; Soil water balance; Soil–crop carbon accumulation; Crop production; Water productivity (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421005801
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:260:y:2022:i:c:s0378377421005801

DOI: 10.1016/j.agwat.2021.107303

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:260:y:2022:i:c:s0378377421005801