Fine root plasticity of young Populus tomentosa plantations under drip irrigation and nitrogen fertigation in the North China Plain
Yuelin He,
Guangde Li,
Benye Xi,
Hui Zhao and
Liming Jia
Agricultural Water Management, 2022, vol. 261, issue C
Abstract:
A field experiment was conducted in 2017 and 2018 to investigate the responses of fine root growth and morphology plasticity to drip irrigation and nitrogen fertigation (DIF) in a young triploid P. tomentosa plantation in the North China Plain. We monitored four DIF treatments (I20F0, I20FH, I45F0, I45FH), which were the combinations of two irrigation thresholds (− 20 kPa and − 45 kPa, denoted as I20 and I45) and two N fertigation amounts (0, denoted as F0; 220 and 260 kg N ha−1 year−1 in 2017 and 2018, denoted as FH). Some soil properties and aboveground growth parameters were also monitored. I20 significantly improved fine root biomass density (FRBD) by 156.92% and induced a significant reduction of specific root length (SRL) by 28.79% in 0–30 cm soil layers than I45, and FH significantly decreased fine root length density (− 62.88%), surface area (− 54.01%), and SRL (− 39.01%) in 30–80 cm soil layers than F0 in 2017. Fine root traits differed little among DIF treatments in 0–30 cm soil layers in 2018, but I20 significantly improved FRBD by 259.98% than I45 and FH significantly improved fine root averaged diameter by 67.14% in 30–80 cm soil layers than F0. These suggested that fine root had a conservative foraging strategy in water- and nitrogen-rich conditions. All the trait plasticity might be due to the changeable soil properties (i.e. soil water content, organic matter, nitrate and ammonium nitrogen, and total phosphorus). Based on the little difference of fine root mass among DIF treatments in two years, we hold the view that fine root distribution pattern and some growth and morphological traits adapted to water-nitrogen heterogeneity more easily than the mass plasticity in young aged P. tomentosa plantations. Yet enhancing our understanding of fine root foraging strategy in response to DIF practices and how it affects tree growth requires more attention to some physiological and biochemical processes and the growth dynamics of the root systems.
Keywords: Fine root morphology; Vertical distribution; Soil property; Drip irrigation; Fertigation; Poplar (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421006181
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:261:y:2022:i:c:s0378377421006181
DOI: 10.1016/j.agwat.2021.107341
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().