Long-term straw rather than manure additions improved least limiting water range in a Vertisol
Renjie Ruan,
Zhongbin Zhang,
Yuekai Wang,
Zichun Guo,
Hu Zhou,
Renfeng Tu,
Keke Hua,
Daozhong Wang and
Xinhua Peng
Agricultural Water Management, 2022, vol. 261, issue C
Abstract:
Least limiting water range (LLWR) is a range in soil water content not limiting root growth, which integrates the effect of soil water retention, aeration, and penetration resistance. This study aimed to assess the effect of different long-term fertilization treatments on LLWR in the surface layer of a Vertisol. Soil samples were taken from six long-term fertilization treatments including no fertilization (Control), inorganic fertilization (NPK), inorganic fertilization plus low amount of straw (NPKLS), inorganic fertilization plus high amount of straw (NPKHS), inorganic fertilization plus pig manure (NPKPM) and inorganic fertilization plus cow manure (NPKCM) for measuring LLWR. Results showed that in comparison with the Control, the manure treatments (NPKPM and NPKCM) increased soil organic carbon content (SOC) more pronounced than the straw treatments (NPKLS and NPKHS). However, the water stable aggregates (WSA0.25) in the manure treatments was much smaller than the straw treatments. Soil water content at field capacity (θFC) was significantly higher in the manure treatments (NPKPM and NPKCM) than the other treatments. However, soil water content at soil penetration resistance of 3 MPa (θPR) was significantly lower in the straw treatments than in the manure treatments. The LLWR in the manure treatments had sharper decline with bulk density than the other treatments. In comparison with the Control and NPK treatments, the straw treatments significantly increased the LLWR, but manure treatments did not, probably resulting from positive relation between SOC and penetration resistance at a given soil water content and less favorable effect of the manures on soil aggregation than the straw. The S index was significantly increased by the NPKCM treatment relative to the Control, and positively correlated with the SOC. The variation of WSA0.25 instead of SOC could explain the change of LLWR under different fertilization treatments effectively. These observations imply that the LLWR could assess the effect of organic fertilizations on soil physical quality more comprehensively.
Keywords: Least limiting water range; S index; Organic fertilizations; Water stable aggregates (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421006338
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:261:y:2022:i:c:s0378377421006338
DOI: 10.1016/j.agwat.2021.107356
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().