Spatiotemporal variations of water productivity for cropland and driving factors over China during 2001–2015
Shanshan Yang,
Jiahua Zhang,
Jingwen Wang,
Sha Zhang,
Yun Bai,
Siqi Shi and
Dan Cao
Agricultural Water Management, 2022, vol. 262, issue C
Abstract:
Croplands play an important role in China’s agricultural production and food security. However, the shortage of water resource due to climate change and unsuitable utilization poses heavy pressure on agricultural water use in China. Water productivity (WP), defined as the amount of crop production per unit of water consumption by croplands, provides a useful indicator for quantifying where the water can be used more effectively. To date, the spatiotemporal variations of cropland WP in China and its controlling factors at the interannual scale remain poorly understood. In this study, a remote sensing-based ecosystem model (i.e., Breathing Earth System Simulator, BESS) was applied to quantify and analyze the spatiotemporal variations and driving factors of cropland WP in China during 2001–2015. The results showed cropland WP in China had high spatial heterogeneity, ranging from 0.27 to 3.91gC kg−1 H2O with an average of 1.86 ± 0.30 gC kg−1 H2O. Dry farmland and paddy field differed considerably in WP values across different regions. During 2001–2015, WP of most croplands (88%) exhibited significantly increasing trends, and dry farmland generally had greater increasing trends than paddy field among all regions. Contribution analysis revealed that the spatiotemporal variations of cropland WP during 2001–2015 were mostly attributed to remarkable increase of crop yield (i.e., GPP), except for some croplands in northwestern regions (e.g., GX) where WP variations were regulated by cropland water consumption (i.e., ET). Furthermore, we examined the driving factors of cropland WP interannual varibility (IAV), and found the dominant factor of WP IAV varied greatly between cropland types and regions. Overall, precipitation was the primary driver of cropland WP IAV at the national level, followed by air temperature and solar radiation. Besides, drought also plays a great role in manipulating WP IAV, especially the medium and long-term drought.
Keywords: Water use efficiency (WP); Cropland; Remote sensing-based ecosystem model (BESS); China; Controlling factor; Interannual variability (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421006053
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421006053
DOI: 10.1016/j.agwat.2021.107328
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().