EconPapers    
Economics at your fingertips  
 

Maize leaf functional responses to blending urea and slow-release nitrogen fertilizer under various drip irrigation regimes

Jinjin Guo, Junliang Fan, Youzhen Xiang, Fucang Zhang, Shicheng Yan, Xueyan Zhang, Jing Zheng, Xianghao Hou, Zijun Tang and Zhijun Li

Agricultural Water Management, 2022, vol. 262, issue C

Abstract: The effects of water deficit on maize growth and physiological activities have been extensively studied. However, there are few studies about how various nitrogen (N) fertilizer types alleviate the impact of water stress on maize yield. A two-year field experiment was conducted to explore the effects of N type on maize growth, physiological characteristics and gain yield under various water-stressed conditions in 2019 and 2020. This experiment included three irrigation levels of W1 (60% ETc, ETc is crop evapotranspiration), W2 (80% ETc) and W3 (100% ETc), and three N fertilizer types of urea (U), slow-release nitrogen fertilizer (SRF) and blending U and SRF (UNS). The results showed that W1 and W2 significantly reduced maize leaf area index and leaf N content, which declined maize net photosynthetic rate (Pn), transpiration rate (Tr) and chlorophyll fluorescence, inhibited chlorophyll synthesis and thus reduced maize yield. W3 not only increased maize growth, Pn and Tr, but also enhanced the correlation between Pn, chlorophyll content, chlorophyll fluorescence parameters and leaf area index/leaf N content. The application of UNS alleviated the grain yield reduction associated with water stress. Under W1 (W2), the grain yield in UNS were 3.6–22.1% (10.4–25.0%) and 4.4–24.2% (5.3–15.4%) greater than that in U and SRF, respectively. Although W3SRF obtained the highest yield grain among all the treatments, no significant difference was found between W3UNS and W3SRF. Under the same irrigation amount, UNS increased the water productivity compared with U. In conclusion, UNS could stabilize grain yield by regulating maize leaf functional traits to cope with future climate change and ensure regional food security.

Keywords: Water deficit; N fertilizer type; Leaf area index; Leaf N content; Physiological characteristics; Grain yield (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421006739
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421006739

DOI: 10.1016/j.agwat.2021.107396

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421006739