Combined effects of irrigation level and fertilization practice on yield, economic benefit and water-nitrogen use efficiency of drip-irrigated greenhouse tomato
You Wu,
Shicheng Yan,
Junliang Fan,
Fucang Zhang,
Wenju Zhao,
Jing Zheng,
Jinjin Guo,
Youzhen Xiang and
Lifeng Wu
Agricultural Water Management, 2022, vol. 262, issue C
Abstract:
The over-application of irrigation and chemical fertilization in the greenhouse vegetable production system (GVPS) in China can jeopardize fruit quality, compromise economic profit and waste resources. Seeking optimal water and fertilizer supply mode for GVPS is urgently required to improve resource use efficiency and economic benefit. A greenhouse experiment was conducted during four consecutive tomato growing seasons to investigate the combined effects of various irrigation levels and fertilization practices on yield, fruit quality, economic benefit, water use efficiency (WUE) and nitrogen use efficiency (NUE) of drip-fertigated tomato, and to obtain the optimal water and fertilizer supply practice by the principal component analysis (PCA). On the basis of full irrigation (W1: 100%ETc, ETc was the crop evapotranspiration), two deficit irrigation levels (W2: 75%ETc, W3: 50%ETc) were set. Except for the conventional fertilization practice used by local farmers (CC: chicken manures for basal application and chemical fertilizer for topdressing), four other fertilization practices were considered, including soluble organic fertilizers for topdressing (SO), soluble chemical fertilizers for topdressing (SC), both soluble organic and chemical fertilizers for topdressing (SOSC), and a control with no fertilizer application under full irrigation (CK). The results showed that SOSC obtained relatively high plant nitrogen uptake, net profit and WUE, and significantly improved tomato yield. Organic fertilizers addition reduced nitrate content in tomato fruits. Deficit irrigation promoted CC to obtain higher WUE than SC. According to the result of PCA, the comprehensive ranking of SOSC was first among the fertilization practices, regardless of irrigation levels and growing seasons. W1SOSC and W2SOSC were highly recommended for greenhouse tomato production in spring and autumn seasons, respectively.
Keywords: Deficit irrigation; Tomato yield; Economic profit; Nitrogen use efficiency; Water use efficiency (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421006788
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421006788
DOI: 10.1016/j.agwat.2021.107401
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().