EconPapers    
Economics at your fingertips  
 

Quantifying the variability in water use efficiency from the canopy to ecosystem scale across main croplands

Yanan Chen, Zhi Ding, Pujia Yu, Hong Yang, Lisheng Song, Lei Fan, Xujun Han, Mingguo Ma and Xuguang Tang

Agricultural Water Management, 2022, vol. 262, issue C

Abstract: Current, how to use limited water resources efficiently and improve agricultural water use efficiency, has become one of the greatest challenges for global food security. In this study, multiple site-years of carbon and water flux data across the major crops including maize, winter wheat and soybean, were used to quantify the variability in canopy-scale transpiration (T), ecosystem-scale evapotranspiration (ET) as well as the associated water use efficiencies (WUET and WUEET). On the basis of ET partitioning, the results indicated that the transpiration ratio–T/ET as well as T and ET exhibited an obvious single-peak seasonal pattern across the typical croplands. However, at the early and late growing stages, there existed large discrepancies in T and ET owing to low vegetation coverage, while T and ET were very close during the peak period. Among them, maize exhibited the largest T/ET by 0.50 ± 0.12, followed by soybean of 0.43 ± 0.08 and winter wheat of 0.38 ± 0.09, respectively. Furthermore, the coupling relationships between gross primary productivity (GPP) and water fluxes including T and ET changed from linear to nonlinear. The study also found that the variability in WUET and WUEET were not consistent. Specifically, WUEET showed distinct seasonal characteristic whereas WUET kept constant as a plateau almost throughout the growth period, which reflected the inherent physiological property controlled by plant stomata at the canopy scale. Among these crops, maize exhibited the largest WUET and WUEET (5.30 ± 0.89 and 2.48 ± 1.14 g C kg−1 H2O), followed by winter wheat (4.97 ± 1.52 and 2.35 ± 0.64 g C kg−1 H2O) and soybean (4.88 ± 1.59 and 1.89 ± 0.99 g C kg−1 H2O), respectively.

Keywords: Crop species; Transpiration; Evapotranspiration; Water use efficiency; Precision agriculture (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421007046
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421007046

DOI: 10.1016/j.agwat.2021.107427

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421007046