EconPapers    
Economics at your fingertips  
 

Simulating the effect of subsurface tile drainage on watershed salinity using SWAT

Haider Addab and Ryan T. Bailey

Agricultural Water Management, 2022, vol. 262, issue C

Abstract: Subsurface tile drains in areas with intensive agriculture can be a major contributor of salinity loadings to streams and rivers, as salts in soil and groundwater are transported into the tile drains. Modeling tools can be used to assess baseline conditions, quantify salt mass export, and assess management scenarios to decrease salt removal. In this study, a newly developed version of the SWAT model for salinity transport, SWAT-Salt, was modified to include salt ion transport in subsurface tile drains and used to explore the effects of region-wide implementation of subsurface drainage on salinity transport and export from an irrigated semi-arid watershed. The model includes the transport of 8 major salt ions (SO4, Ca, Na, Cl, Mg, K, CO3, HCO3), and with the inclusion of tile drain transport simulates the fate and reactive transport of these ions in soil water, groundwater, tile drain water, and stream water. The SWAT-Salt model is applied to a 732 km2 salinity-impaired irrigation region within the Arkansas River Valley in southeastern Colorado. The model is first tested against salt ion data in effluent from a 15 km2 tile drainage district, and then applied to the entire region to assess the impact of region-wide implementation of subsurface tile drainage on in-stream salt ion concentrations, in-stream salt ion loading, and total salt export from the watershed. The model can be a useful tool in simulating salinity transport in tile drained watershed and investigating the effect of salinity management practices at a variety of spatial and temporal scales.

Keywords: Salinity; Tile drains; SWAT; SWAT-Salt (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421007083
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421007083

DOI: 10.1016/j.agwat.2021.107431

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421007083