Managing irrigation supplies effectively under interrupted electricity supply: Lesson from an arid region of India
Sanjay Kumar,
Deepesh Machiwal,
Arvind Singh Tetarwal,
Ramniwas, and
Meera Vaishnav
Agricultural Water Management, 2022, vol. 263, issue C
Abstract:
Groundwater extraction through electrically operated tubewells offers a resilient source of irrigation supply in arid regions especially during droughts. However, interrupted and low-voltage electric supply with limited availability and frequent trips increases repair and maintenance costs of tubewell irrigation and reduces tubewell discharge resulting in less-efficient and non-uniform water application. This study evaluates performance of an indigenous system of groundwater irrigation that was evolved over the generations in arid region of Gujarat, India to address electricity-triggered issues of irrigated agriculture. In this system, groundwater extracted during electricity availability hours is stored in surface reservoirs for later supplying to irrigate crops under gravity flow irrespective of electricity availability. A comprehensive survey of the indigenous system is conducted in a village of Gujarat to make inventory of all tubewells and storage reservoirs about their depth, size, pump type and horsepower, command area, crops, irrigation timing and frequency, etc. Discharge of tubewells was measured and their locations were recorded. Results revealed that the indigenous system is advantageous over the direct tubewell-irrigation in terms of 37.4% higher water-delivery rate and 50% more average irrigation capacity. These findings prove adequacy of the indigenous system in regulating irrigation supplies to deal with electricity-induced intricacies of irrigated agriculture. Amount of water lost through unit area of earthen (seepage and evaporation ∼2.77 m) and masonry (evaporation ∼1.22 m) reservoirs collectively accounts for a negligible proportion (0.9%) of groundwater draft. Furthermore, a methodology is devised to precisely estimate village-level groundwater draft for irrigation, which is validated by 0.9% deviation between observed and predicted values of groundwater draft. Moreover, the indigenous system is simple, cost-effective and easy to implement in other parts of the world especially in arid regions of the developing countries where low-voltage and intermitted electricity supply persists.
Keywords: Groundwater irrigation; Groundwater draft estimation; Storage reservoir; Irrigation capacity; Indigenous system; Arid region (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422000129
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:263:y:2022:i:c:s0378377422000129
DOI: 10.1016/j.agwat.2022.107465
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().