EconPapers    
Economics at your fingertips  
 

Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction

Pinpin Ren, Feng Huang and Baoguo Li

Agricultural Water Management, 2022, vol. 263, issue C

Abstract: Severe water shortages threaten the sustainability of agriculture in the Huang-Huai-Hai Plain (3HP), China. This study investigated spatiotemporal variations in crop water consumption (evapotranspiration, ET) and irrigation water requirements (IWR) under existing winter wheat–summer maize (WWSM) cropping system in the 3HP, and tested alternatives of their reduction that may require less irrigation, i.e., wheat–maize–wheat–fallow (WMWF), wheat–maize–fallow–maize (WMFM), wheat–maize–fallow–spring maize (WMFSM), and fallow–spring maize–fallow–spring maize (FSMFSM). The results showed that the annual ET indicated no significant change from 2001 to 2018, which decreased from southeast to northwest and ranged from 700 mm to 900 mm. In the winter wheat (WW) season, ET increased significantly at the junction of Hebei and Shandong provinces, while it decreased in western Hebei during the summer maize (SM) period. Moreover, ET for WW decreased from dry to normal and wet years (433, 413, and 373, mm), while it increased in SM season (377, 392, and 396, mm). IWR showed great interannual variability. Anhui, central and southern Henan, and southwestern Shandong presented annual IWR below 200 mm, with 100–300 mm in the WW period, and − 300 (0) – 100 mm in the SM period (negative IWR means rainfall surplus and no real irrigation). The north of the 3HP required considerable irrigation in the WW season, especially in western Hebei and northwestern Shandong (over 300 mm in dry years and 200 mm in wet years), with IWR ranging from − 100–100 mm in the SM period. The 18-year average IWR of WWSM, WMWF, WMFM, WMFSM, and FSMFSM was 344, 321, 211, 240, and 119 mm, respectively, from 2001 to 2018 (Luancheng as example, same below). Reducing irrigation by 32%, 44%, and 64%, WMFSM, WMFM and FSMFSM showed the greatest potential for reducing IWR, but food security should also be considered when adjustments are made.

Keywords: Crop water consumption; Spatiotemporal variation; Irrigation amount; Cropping system adjustment; Hydrological year type (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422000154
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:263:y:2022:i:c:s0378377422000154

DOI: 10.1016/j.agwat.2022.107468

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:263:y:2022:i:c:s0378377422000154