Irrigation optimization with a deep reinforcement learning model: Case study on a site in Portugal
Khadijeh Alibabaei,
Pedro D. Gaspar,
Eduardo Assunção,
Saeid Alirezazadeh and
Tânia M. Lima
Agricultural Water Management, 2022, vol. 263, issue C
Abstract:
In the field of agriculture, the water used for irrigation should be given special treatment, as it is responsible for a large proportion of total water consumption. Irrigation scheduling is critical to food production because it guarantees producers a consistent harvest and minimizes the risk of losses due to water shortages. Therefore, the creation of an automatic irrigation method using new technologies is essential. New methods such as deep learning algorithms have attracted a lot of attention in agriculture and are already being used successfully. In this work, a Deep Q-Network was trained for irrigation scheduling. The agent was trained to schedule irrigation for a tomato field in Portugal. Two Long Short Term Memory models were used as the agent environment. One predicts the total water in the soil profile on the next day. The other one was employed to estimate the yield based on the environmental condition during a season and then measure the net return. The agent uses this information to decide the following irrigation amount. An Artificial Neural Network, a Long Short Term Memory, and a Convolutional Neural Network were used to estimating the Q-table during training. Unlike the Long-Short Terms Memory model, the Artificial Neural Network and the Convolutional Neural Network could not estimate the Q-table, and the agent’s reward decreased during training. The comparison of the performance of the model was done with fixed base irrigation and threshold based irrigation. The trained model increased productivity by 11% and decreased water consumption by 20–30% compared to the fixed method.
Keywords: Agriculture; LSTM; Deep reinforcement learning; Irrigation scheduling (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422000270
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:263:y:2022:i:c:s0378377422000270
DOI: 10.1016/j.agwat.2022.107480
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().