EconPapers    
Economics at your fingertips  
 

Double-root-grafting enhances irrigation water efficiency and reduces the adverse effects of saline water on tomato yields under alternate partial root-zone irrigation

Wenjia Li, Yanming Gao, Yongqiang Tian and Jianshe Li

Agricultural Water Management, 2022, vol. 264, issue C

Abstract: Since most world regions face freshwater (FW) shortages, water-saving irrigation and irrigation with saline water (SW) are currently two inevitable agricultural practices for crop production. However, these two practices generally have adverse effects on crop yields. In this study, we investigated the effects of double-root-grafting (DRG) on plant growth, crop yields, tomato quality and root-zone properties under alternate partial root-zone irrigation (APRI) with FW or SW. Self-rooting (SR), DRG, conventional irrigation (CI), APRI, FW and SW were considered in the experimental design to create treatments that included (i) SR-CI-FW, (ii) SR-APRI-FW, (iii) DRG-APRI-FW, (iv) SR-APRI-SW and (v) DRG-APRI-SW. The DRG used here is a ‘tongue approach grafting’ method in which grafted plants retain both rootstock (eggplant) root and scion (tomato) root in order to maximize the effectiveness of grafting under abiotic stress. The tested salinity level was 3.51 mS cm−1 which had exceeded the threshold salinity of tomato (2.50 mS cm−1). In general, APRI application increased water productivity by 22.2–35.6%, but decreased fruit yields by 9.1–18.8% in SR plants (SR-APRI-FW vs. SR-CI-FW). However, under APRI conditions, DRG plants showed higher rate of plant growth and less salinity damage as compared to SR plants. Application of DRG significantly (P < 0.05) increased tomato fruit yields by 7.9–17.2% under standard conditions (DRG-APRI-FW vs. SR-APRI-FW) and by 14.2–27.4% under salinity conditions (DRG-APRI-SW vs. SR-APRI-SW). Taken together, double-root-grafting enhanced irrigation water efficiency and reduced the adverse effects of saline water on tomato yields under alternate partial root-zone irrigation.

Keywords: Freshwater shortage; Water-saving irrigation; Low-quality water; Grafted plants; Tomato yields (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037837742200035X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:264:y:2022:i:c:s037837742200035x

DOI: 10.1016/j.agwat.2022.107488

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:264:y:2022:i:c:s037837742200035x