Effect of the optimized regulated deficit irrigation methodology on quality, profitability and sustainability of barley in water scarce areas
J.J. Pardo,
A. Domínguez,
B.C. Léllis,
F. Montoya,
J.M. Tarjuelo and
A. Martínez-Romero
Agricultural Water Management, 2022, vol. 266, issue C
Abstract:
A three-year experiment (2015–2017) was conducted under the semiarid conditions of the Hydrogeological Unit Eastern Mancha (HUEM) (Spain), using the optimized regulated deficit irrigation for a limited amount of irrigation water (ORDIL) methodology on barley. Five irrigation treatments were performed during the experiment: no deficit (ND), 100% (T100), 90% (T90), 80% (T80), and 70% (T70) of barley net typical irrigation requirements (2500 m3 ha-1) in the area. The aim was to determine the effect of ORDIL: 1) on the quality of grain and malt; 2) on the profitability and use of water at farm scale; and 3) on the profitability and sustainability of the HUEM. Despite using less water, ORDIL treatments showed no significant differences in grain quality with respect to ND, while T80 achieved the highest economic water productivity (average 0.17 € m-3). Thus, by using T80 instead of ND and increasing the irrigated area of barley on the farm by 14%, it is possible to save up to 31% of water with the same profitability. This amount of water could be used for more profitable crops, increasing the profitability of the farm. The use of ORDIL at basin scale, using T80 instead of ND and increasing the cultivated area by 9%, could have saved up to 55.9 hm3 over the 3 experimental years (16% of annual extractions in the HUEM). Supplying this water to more profitable crops, the profitability of the basin could have increased by up to 44.4 M€. In the case of saving this amount of groundwater, piezometric levels would have risen, decreasing the pumping costs and improving the environmental conditions in the area. Consequently, applying ORDIL in low-profit crops, such as barley, and in water scarce areas, could improve the profitability and/or the sustainability of agricultural systems, maintaining the production.
Keywords: Hordeum vulgare L.; MOPECO model; ORDIL; Malting process; Semiarid (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422001202
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:266:y:2022:i:c:s0378377422001202
DOI: 10.1016/j.agwat.2022.107573
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().