Crop water stress index computation approaches and their sensitivity to soil water dynamics
Abia Katimbo,
Daran R. Rudnick,
Kendall C. DeJonge,
Tsz Him Lo,
Xin Qiao,
Trenton E. Franz,
Hope Njuki Nakabuye and
Jiaming Duan
Agricultural Water Management, 2022, vol. 266, issue C
Abstract:
There is a growing interest of using canopy temperature (Tc) based methods, including crop water stress index (CWSI), for irrigation management. However, different approaches exist to normalize Tc to microclimatic conditions, which can influence the accuracy and suitability of CWSI for irrigation scheduling. This study evaluated the performance of CWSI computation approaches and their sensitivity to changes in soil water depletion under different water stress levels. There were six different approaches – two empirical methods using developed lower baseline (i.e., CWSI-EB1, CWSI-EB2), two empirical methods using either artificial (CWSI-EA) or actual/natural (CWSI-EN) canopy reference surfaces, and two theoretical approaches which differ by how aerodynamic and canopy resistances are determined (CWSI-Th1, CWSI-Th2). Stationary infrared thermometers (IRTs) provided continuous Tc to calculate CWSI-EB, CWSI-Th, and CWSI-EN; whereas mobile IRTs and a thermal camera provided one-point-in-time Tc and temperatures of artificial canopy reference surfaces to calculate CWSI-EA. These measurements were all collected from full and deficit irrigated and rainfed maize plots in West Central Nebraska. Day-to-day variations within and across CWSI approaches were evident and their sensitivity to soil water depletion varied. Greater sensitivity and correlation strength to depletion (Dr,i) were observed with CWSI-Th and CWSI-EB under severe stress (i.e., Dr,i > 80%) at deeper soil depths of 1.8 and 2.1 m, producing r2 which ranged from 0.61 to 0.80 (slope: 0.03–0.05) and 0.69–0.79 (slope: 0.03–0.04), respectively. Observed differences in stress magnitudes among approaches and treatments, warrants a specific irrigation triggering threshold for each approach. Additionally, developing a robust index coupling both CWSI and soil water depletion is desirable to improve irrigation water management by accounting for both soil and plant water status.
Keywords: Canopy temperature; Irrigation scheduling; Infrared thermometers; Mobile sensing platform; Canopy reference surfaces; Soil water depletion; West Central Nebraska (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422001226
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:266:y:2022:i:c:s0378377422001226
DOI: 10.1016/j.agwat.2022.107575
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().