Effects of organic amendment incorporation on maize (Zea mays L.) growth, yield and water-fertilizer productivity under arid conditions
Wentong Zhang,
Yunwu Xiong,
Yaping Li,
Yichao Qiu and
Guanhua Huang
Agricultural Water Management, 2022, vol. 269, issue C
Abstract:
Land degradation is one of the world’s most pressing environmental problems and a constraint to agricultural production. Application of diverse organic amendments provides a management strategy to compensate for soil organic carbon depletion and reduce land degradation. The objective of this study was to investigate the effects of different organic amendments on soil properties, crop growth and water-fertilizer productivity under arid conditions. Soil in a maize field located in the upper reaches of Yellow River was amended with sheep manure compost and maize stover respectively. Five different application rates (2, 4, 6, 8 and 10 t ha-1) were carried out for the compost, and maize stover (6 t ha-1) combined with two different decomposing agents were implemented. Main component of the decomposing agent was Bacillus subtilis and Trichoderma harzianum, respectively. Soil aggregation and physical-chemical properties were generally improved with the incorporation of compost and maize stover. The addition of compost and maize stover reduced the bulk density and increased the field capacity, soil organic matter, aggregate stability and the saturated hydraulic conductivity. The emergence rate and maize growth properties improved in the organic materials amended plots. However, soil properties and crop growth non-monotonically varied with application rate of compost. The addition of different decomposing agents in maize stover amended plots did not show significant impact on most soil properties, but improved soil nutrient status, crop growth and yield with different levels compared with maize stover alone. Comprehensive analysis of yield, crop water productivity and partial factor productivity for nitrogen, incorporation of compost at a rate of 5–6 t ha-1 or 6 t ha-1 maize stover combined with Bacillus subtilis was recommended as a proper strategy in loamy soil under arid conditions.
Keywords: Sheep manure compost; Maize (Zea mays L) stover; Water productivity; Partial factor productivity of nitrogen; Border irrigation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422002104
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002104
DOI: 10.1016/j.agwat.2022.107663
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().