EconPapers    
Economics at your fingertips  
 

Assessing the freshwater fluxes related to beef cattle production: A comparison of integrated crop-livestock systems and a conventional grazing system

Mariana Pereira Barsotti, Roberto Giolo de Almeida, Manuel C.M. Macedo, Valdemir A. Laura, Fabiana V. Alves, Jessica Werner and Uta Dickhoefer

Agricultural Water Management, 2022, vol. 269, issue C

Abstract: Beef production is one of the largest water consumers of all food production systems, but there are substantial knowledge gaps about the accounting and interpretation of its freshwater consumption. Moreover, hardly any study has assessed the freshwater fluxes related to beef cattle in integrated crop-livestock (ICL) and crop-livestock-forestry (ICLF) systems. We aimed at quantifying the freshwater fluxes related to beef cattle raised on continuous permanent Brachiaria pastures (CON) or in ICL and ICLF systems in the Brazilian Cerrado in the rainy and dry seasons. Evapotranspiration of forage grass, Eucalyptus trees in ICLF, and from drinking water troughs were calculated from meteorological data collected in the field. Forage accumulation was measured in 11 paddocks over both seasons, and forage intake, drinking water intake, and bodyweight were quantified in 12 growing Nellore heifers per system during two months per season. Freshwater fluxes related to forage production and animals were estimated. Drinking water intake and water intake via forage did not differ (P ≥ 0.073) between the systems, and were greater (P ≤ 0.035) in the rainy than the dry season. Faecal and urinary water excretions were greater in the dry than the rainy season (P ≤ 0.005). The respiratory and cutaneous water losses were greater (P < 0.001) in the rainy than the dry season. In the rainy season, evapotranspiration related to forage accumulation and freshwater consumption for raising beef cattle were greatest in CON, whereas they were greatest in ICLF in the dry season. Although ICLF appeared to be less resilient to dry periods, both integrated systems offer the potential for reduced freshwater consumption for raising beef cattle under grazing conditions, by improving the efficiency of forage use and/or decreasing evapotranspiration of forage.

Keywords: Agroforestry; Farming system; Ruminant; Silvopastoral; Tropical pasture; Water footprint (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422002128
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002128

DOI: 10.1016/j.agwat.2022.107665

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002128