EconPapers    
Economics at your fingertips  
 

Long-term multi-step ahead forecasting of root zone soil moisture in different climates: Novel ensemble-based complementary data-intelligent paradigms

Mehdi Jamei, Masoud Karbasi, Anurag Malik, Mozhdeh Jamei, Ozgur Kisi and Zaher Mundher Yaseen

Agricultural Water Management, 2022, vol. 269, issue C

Abstract: The root zone soil moisture (RZSM) is essential for monitoring and forecasting agricultural, hydrological, and meteorological systems. Accordingly, researchers are determined to improve robust machine learning (ML) models to increase the accuracy of the RZSM predictions. This paper designed new complementary forecasting paradigms hybridizing Empirical Wavelet Transform (EWT) and two modern ensemble-based ML models, namely, extreme gradient boosting (XGBoost) and categorical boosting (CatBoost), to forecast long-term multi-step ahead daily RZSM in very cold and very warm semi-arid regions of Iran. For this purpose, the required datasets consisting of soil properties and meteorological information were extracted from the satellite datasets during 2005–2020 for Ardabil and Minab sites. Afterward, the significant lags of RZSM time series and optimal influence candidate inputs were sought based on the partial autocorrelation function (PACF) and mutual information techniques, respectively. Selected lagged components of RZSM time series were decomposed using EWT into different sub-sequences and consequently concatenated with candidate inputs to feed the ensemble ML models to forecast one-, three-, and seven-day-ahead RZSM at each case study. The performance of EWT-CatBoost and EWT-XGBoost and their counterpart standalone approaches was firstly evaluated in forecasting one-, three-, and seven-day-ahead RZSM using satellite data in this study and their accuracy were compared with a standalone kernel ridge regression (KRR) and complementary EWT-KRR models based on several statistical metrics (e.g., correlation coefficient (R), root mean square error (RMSE), Nash–Sutcliffe model efficiency coefficient (NSE)) and diagnostic analysis. The outcomes of testing phase in Ardabil site ascertained that the EWT-CatBoost (for RZSM(t + 1), R= 0.9979, RMSE= 0.0019, and NSE= 0.9985; for RZSM(t + 3), R= 0.9934, RMSE= 0.0035, and NSE= 0.9885; for RZSM(t + 7), R= 0.9489, RMSE= 0.0109, and NSE= 0.8634) outperformed the other models. On the other hand, the EWT-XGBoost model according to its best results (for RZSM(t + 1), R= 0.9911, RMSE= 0.0064, and NSE= 0.9805; for RZSM(t + 3), R= 0.9807, RMSE= 0.0092, and NSE= 0.9589; for RZSM(t + 7), R= 0.9680, RMSE= 0.0120, and NSE= 0.9309) yielded the most promising accuracy in forecasting multi-step ahead daily RZSM followed by the EWT-CatBoost, and EWT-KRR, respectively.

Keywords: Root zone soil moisture; Microwave; Categorical boosting; Extreme gradient boosting; Empirical wavelet; Forecasting (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422002268
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002268

DOI: 10.1016/j.agwat.2022.107679

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002268