EconPapers    
Economics at your fingertips  
 

Ecological risk assessment and bioaccumulation of trace element, copper, in wheat varieties irrigated with non-conventional water resources in a semi-arid tropics

Zafar Iqbal Khan, M. Iftikhar Hussain, Asma Zafar, Kafeel Ahmad, Muhammad Arslan Ashraf, Mukhtar Ahmed, Ayshah Aysh ALrashidi, Haifa Abdulaziz Sakit ALHaithloul, Suliman Mohammed Alghanem, Muhammad Imran Khan, Yasir Hamid and Hidayat Hussain

Agricultural Water Management, 2022, vol. 269, issue C

Abstract: In developing countries, using non-conventional water for irrigation is a traditional and cost-effective tool. However, its long-term use for agriculture and forestry will led to toxic metal bioaccumulation in plants and soil environment. Copper (Cu) is an essential plant nutrient but its excess accumulation can cause significant issues and risks to human health following food crop consumption. The present study was conducted with the aim to assess impact of copper (Cu) in the five wheat varieties (Seher-2006, Faislabad-2008, Watan, Galaxy-2013, Punjab-2011) at 7-ecological sites during the two growing seasons (2017, 2018). The source of irrigation included the ground water, industrial wastewater and sewage water. The Cu concentrations were subsequently determined via ecological environment (water, soils) and below and above ground plant organs (shoots, roots, and wheat grains) and phytostabilization potential assessment using various pollution indices. Results of this study revealed that mean Cu concentration in different wheat varieties and treatments were varied from 1.53 to 1.07–3.22 mg/kg, 0.58 and 1.94 mg/kg, 0.43–2.39 mg/kg, and 0.23–0.78 mg/kg in amended soil, root, shoot, and grains, respectively. Wheat cultivar, Seher-2006 showed highest Cu transfer from shoot to grain following irrigation with ground water while lowest after industrial water irrigation. High content of Cu was obtained in water and toxicity was higher than the maximum permissible limit. In case of grain and soil samples the copper contents were present within the safe limits. The value of all the indices for Cu were found less than 1 except for bioaccumulation factor and translocation factor that were greater than 1 for some samples. Our results revealed that the studied varieties of wheat crop were safe for consumption but the continuous usage of wastewater for irrigation may pose health risks after many years of consumption because some samples showed the high value for bioaccumulation factor and transfer factor. Wheat varieties possess desirable traits that are vital for phytoremediation purposes.

Keywords: Copper; Health risk index; Translocation factor; Wastewater; Wheat (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037837742200258X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:269:y:2022:i:c:s037837742200258x

DOI: 10.1016/j.agwat.2022.107711

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s037837742200258x