EconPapers    
Economics at your fingertips  
 

Simulation modeling for effective management of irrigation water for winter wheat

Hongzheng Shen, Yue Wang, Kongtao Jiang, Shilei Li, Donghua Huang, Jiujiang Wu, Yongqiang Wang, Yangren Wang and Xiaoyi Ma

Agricultural Water Management, 2022, vol. 269, issue C

Abstract: Lack of water resources, low irrigation efficiency, and inappropriate irrigation decisions severely restrict agricultural production in arid and semi-arid regions. Therefore, rapid and accurate decision-making regarding crop irrigation in real time is necessary. This study optimized irrigation scheduling by using information on different meteorological years and obtained the average soil water content (0–60 cm) before each irrigation, the corresponding irrigation time, and the water available for irrigation. The relative development speed of winter wheat and the amount of water available for irrigation were considered, and a dynamic irrigation water limit model was constructed. Winter wheat field experiments over 3 years (2016–2019) were followed by an evaluation of the regional applicability of the decision support system for the agrotechnology transfer model. A long short-term memory network effectively predicted air temperature and solar radiation; the R2 and root mean square error values were 0.802–0.964% and 12.53–23.9%, respectively. Public weather forecasts can be used to accurately predict rainfall, with 87.3% and 57% accuracy rates for forecasts of no rain and rain, respectively. Compared with traditional irrigation, the use of this dynamic irrigation lower limit for irrigation forecasting can increase yield and attendant net benefits. When two and three irrigation treatments were applied during the winter wheat growth period, the 3-year average yield increased by 10.3% and 4.4%, respectively, and the net benefit increased by 19.1% and 7.4%, respectively. The proposed method avoids relying on only field experiments to determine the irrigation lower limit and allows for the effective implementation of optimized irrigation schedules and the dynamic correction of irrigation plans in arid and semi-arid areas.

Keywords: Dynamic irrigation lower limit; DSSAT model; Long short-term memory network; Winter wheat; Irrigation decision (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422002670
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002670

DOI: 10.1016/j.agwat.2022.107720

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422002670