EconPapers    
Economics at your fingertips  
 

Response of yield and quality of greenhouse tomatoes to water and salt stresses and biochar addition in Northwest China

Zhuqing Wu, Yaqiong Fan, Yuan Qiu, Xinmei Hao, Sien Li and Shaozhong Kang

Agricultural Water Management, 2022, vol. 270, issue C

Abstract: Improving productivity of saline soils under drought condition is critical for sustainable agricultural development in arid areas. Whether biochar addition can interact with drought and salinity on fruit yield and quality remains unclear. A pot study was conducted to examine the effects of water, salinity and biochar addition on tomato yield and quality in a solar greenhouse of northwest China. There were twelve treatments combining two irrigation levels of high (W1) and low irrigation (W2 = 2/3 W1), three salinity levels with 0%, 0.3% and 0.6% of soil dry weight salts, referred to S0, S1, and S2, respectively, and two biochar addition levels with 0 (B0) and 1% (B1) of soil dry weight. Biochar, water, salinity, and the interaction between water and salinity were found significant affecting yield and irrigation water productivity (IWP). Biochar addition reduced yield and IWP, ranging from by 7% of W2S0 to 43% of W1S2. The difference in yield and IWP between W1 and W2 was greater for lower salinity treatments. The reduction percentage of W2, relative to W1, was 70%, 38%, and 29% for yield, 58%, 14%, and 0.9% for IWP under S0, S1, and S2, respectively. The effects of water, salinity and biochar treatments was found inconsistent for different quality parameters. Adding biochar had no significant effect on firmness, and slightly increased total soluble solids (TSS) and Vitamin C (VC) at both irrigation levels, while lower irrigation and higher salinity generally led to higher TSS and VC. The absolute slope value of the linear regression of yield and quality parameters with soil electrical conductivity was smaller under W2, relative to W1, indicating that the salinity effect was less pronounced when water stress was greater. The results are valuable in developing and evaluating remedy measures for improving saline soil productivity in arid areas.

Keywords: Electrical conductivity; Irrigation water productivity; Total soluble solids; Soluble sugar (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422002839
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:270:y:2022:i:c:s0378377422002839

DOI: 10.1016/j.agwat.2022.107736

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:270:y:2022:i:c:s0378377422002839