EconPapers    
Economics at your fingertips  
 

Physical, chemical and biological emitter clogging behaviors in drip irrigation systems using high-sediment loaded water

Yan Shen, Jaume Puig-Bargués, Mengyao Li, Yang Xiao, Qiang Li and Yunkai Li

Agricultural Water Management, 2022, vol. 270, issue C

Abstract: High-sediment water in drip irrigation (HSWDI) technology offers the opportunity to alleviate water shortages in agricultural irrigation. Emitter clogging, caused by active suspended particles, salt ions, and microorganisms present in water with high sediment load, poses considerable technical challenges to HSWDI. To date, emitter blockage of HSWDI is attributed to physical clogging, little is known about the physical, chemical, and biological clogging behaviors and their interactions for HSWDI. Here, X-ray diffraction and 16S rRNA gene sequencing were applied to determine the physicochemical minerals and microbial community structure of the foulants for HSWDI, using three types of flat emitters and two fertilization modes (no-fertigation and fertigation with ammonium polyphosphate, APP). Results indicated that HSWDI emitter clogging was not only caused by physical clogging (induced by particulates) but also caused by chemical clogging (i.e., precipitates) and biological clogging (i.e., biofilms). The main particulates in HSWDI were found to be quartz (accounting for 41.8–56.3% of total clogging foulants) and feldspar (13.6–21.1%), while the precipitates that contained calcite, dolomite and aragonite contributed 14.6–26.7%. The dominant flora in foulants were Proteobacteria (relative abundance ranged: 41.7–53.9%) and Bacteroidetes (13.6–17.3%). Moreover, the coupling effect of three types of fouling was the main reason affecting clogging (accounting for 36.3%), while the effect of two or single fouling was less (accounting for 14.4–25.3% and 0.7–2.6%). In addition, APP application caused the increase in microbial diversity and the proliferation of microorganisms, resulting in the interactions between biofilm and other two foulants (i.e., precipitates and particulates) were exacerbated, thus aggravating emitter clogging. This study opens a frontier for the investigation of physical, chemical, and biological clogging behavior, in-depth clogging mechanisms, and anti-clogging measures for HSWDI, which will facilitate the utilization of high-sediment water in agricultural irrigation.

Keywords: Composite fouling; Particulate; Precipitate; Biofilm; Ammonium polyphosphate (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422002852
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:270:y:2022:i:c:s0378377422002852

DOI: 10.1016/j.agwat.2022.107738

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:270:y:2022:i:c:s0378377422002852