EconPapers    
Economics at your fingertips  
 

Effects of muddy water irrigation with different sediment particle sizes and sediment concentrations on soil microbial communities in the Yellow River Basin of China

Lina Chen, Zilong Zhao, Jiang Li, Haiming Wang, Guomian Guo and Wenbo Wu

Agricultural Water Management, 2022, vol. 270, issue C

Abstract: Soil microbial communities are critically important for the transformation of nitrogen in agricultural farmlands. The effects of muddy water irrigation with different sediment particle sizes and sediment concentrations on microbial communities in the Yellow River Basin of China have not yet been studied. The 16 S rRNA profiles of bacterial communities in paddy soils were characterized using an orthogonal experiment with four moisture treatments (60%, 80%, and 100% water-filled pore space (WFPS), and drowned), four sediment particle sizes (d50 = 0.017, 0.038, 0.046, and 0.069 mm), and four sediment concentrations (0%, 1%, 5%, and 10%). Proteobacteria, Bacteroidetes, Gemmatimonadetes, Acidobacteria, Chlorobi, and Nitrospirae were the most abundant phyla, and Azospirillum, Limnobacter, Methylophaga, Ramlibacter, Mesorhizobium, Anaeromyxobacter, Geobacter, Candidatus_Solibacter, Gallionella, and Rubrivivax were the most abundant nitrogen-related genera across all treatments. Soil bulk density (SBD) was significantly correlated with Azospirillum, Limnobacter, Methylophaga, Geobacter, and Gallionella. Alpha diversity was highest in the treatment with 100% WFPS, 1% sediment concentration, and 0.069 mm particle size. pH, NH4+, and NO3- were most closely related to the relative abundance of nitrogen-related genera according to correlation analysis. Redundancy analysis (RDA) showed that SBD was the most important factor affecting soil microorganisms; however, NH4+ and NO3- also had substantial effects on soil microorganisms. Structural equation modeling revealed that SBD and pH were the most important factors affecting nitrogen transformation and the microbial community; however, NO3-, NH4+, and the nitrification rate also had significant effects. Overall, the results indicate that muddy water irrigation can be used to enhance the diversity of the soil microbial community. The findings will also aid future research examining the effects of moisture and sediment variables on soil microbial communities in the Yellow River Basin.

Keywords: Yellow river basin; Muddy water irrigation; Microbial community; Nitrogen transformation; Structural equation model (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422002979
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:270:y:2022:i:c:s0378377422002979

DOI: 10.1016/j.agwat.2022.107750

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:270:y:2022:i:c:s0378377422002979