EconPapers    
Economics at your fingertips  
 

Groundwater regulation for coordinated mitigation of salinization and desertification in arid areas

Yong Wang, Yong Zhao, Long Yan, Wei Deng, Jiaqi Zhai, Minjian Chen and Fei Zhou

Agricultural Water Management, 2022, vol. 271, issue C

Abstract: Desertification and salinization are both threats to the ecosystem services in inland river oases of arid regions. Previous studies focus on either desertification or salinization, and there is a lack of joint studies on the two issues. The essential cause of desertification in a transition zone is usually concentrated irrigation water use, which leads to shrink of the subsurface flow field of groundwater, decline of the groundwater level, and loss of groundwater supply to the vegetation. The salinization problem in an oasis area is mainly caused by the local excess groundwater in the oasis, referring to secondary salinization, which leads to salt migration with the groundwater level rise to form salt crystallization at the land surface. Thus, the processes of desertification and secondary salinization are connected, and the solutions to the two problems can be complementary, i.e., by transporting the excess groundwater in the local secondary salinization area to the transition zone area where water is scarce. This paper, taking Luocheng Irrigation District in the Heihe River Basin of northwestern China as an example, estimates 1.76–4.70 million m3 of excess groundwater that can be extracted in the salinized area. Using this amount of water through engineering regulation, it is estimated that the transition zone nearby the irrigation district, which is under desertification threat, can be restored with an area of 23–212 km2. An engineering system is designed for coordinated groundwater regulation and the implementation with an experimental farm in the irrigation district is demonstrated.

Keywords: Groundwater regulation; Desertification; Secondary salinization; Transition zone; Restoration (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422003055
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003055

DOI: 10.1016/j.agwat.2022.107758

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003055