EconPapers    
Economics at your fingertips  
 

Optimizing planting density and irrigation depth of hybrid maize seed production under limited water availability

Rongchao Shi, Jintao Wang, Ling Tong, Taisheng Du, Manoj Kumar Shukla, Xuelian Jiang, Donghao Li, Yonghui Qin, Liuyue He, Xiaorui Bai and Xiaoxu Guo

Agricultural Water Management, 2022, vol. 271, issue C

Abstract: Improvement in seed vigor and yield of hybrid maize is required to ensure food security. Optimal planting density and irrigation depth are critical for hybrid maize seed production in arid areas. Using data from 2012 to 2017, a new integrated model optimized planting density and border irrigation depth for achieving high yield and seed vigor of hybrid maize under limited water availability. For field experiments, a planting density of 9.75 plants m−2 under full irrigation was in the control treatment. The results showed that water deficit decreased yield, evapotranspiration, and aboveground biomass per plant. The highest yield was obtained for the planting density of 12.75 plants m−2 under full irrigation. The single crop coefficient and crop water production function models were modified to simulate evapotranspiration and yield, respectively. Using kernel number per plant and plant growth rate during the flowering stage, a kernel weight model was established. The maximum yield and minimum irrigation depth were weighted and kernel weight was constrained. Three minimum relative kernel weight (RKWmin) options were considered, option 1 with RKWmin= 1.00 (control), option 2 with RKWmin= 0 (unconstrained), and option 3 with RKWmin ranged from 0.60 to 0.90. In option 1, the optimal irrigation depth during the growing season under control planting density decreased by 24.3–39.4% compared to the conventional practices. In option 2, yield increased but average kernel weight decreased by 25% than control. In the option 3, average yield and water use efficiency increased by 9.2% and 6.5% compared to option 1, respectively. The average planting density decreased by 10.2%, yield reduced by 2.0%, and water use efficiency reduced by 1.7%, but kernel weight increased by 9% compared to option 2. Thus option 3 can be recommended for hybrid maize seed production with limited water availability in arid regions of Northwest China. Our research provided a new theoretical method to improve yield, and ensure seed vigor of hybrid maize in arid regions.

Keywords: Crop models; Deficit irrigation; Plant population; Hybrid maize seed yield (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422003067
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003067

DOI: 10.1016/j.agwat.2022.107759

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003067