EconPapers    
Economics at your fingertips  
 

Water use - yield relationship of maize as influenced by biochar and inorganic fertilizer applications in a tropical sandy clay loam soil

Toju Esther Babalola, Bolaji Adelanke Adabembe and Oluwaseun Temitope Faloye

Agricultural Water Management, 2022, vol. 271, issue C

Abstract: Empirical relationship between maize yield and evapotranspiration as influenced by biochar and inorganic fertilizer has been scarcely investigated. Therefore, the study's objectives are to; (i) determine the yield response factor (Ky) of maize under drip irrigation with/without biochar and inorganic fertilizer application; (ii) determine if soil hydrophysical and chemical properties affect the response of maize to water stress under biochar and inorganic fertilizer applications, and (iii) determine the possible mechanism by which biochar improves yield and water use efficiency of maize under deficit irrigation. Field experiments were carried out using a factorial design. Two rates of biochar application (0 and 20 t/ha), two levels of fertilizer (0 and 300 kg/ha) were adopted under three water management strategies (100 % of Full Irrigation Treatment; FIT, 80 % FIT, and 60 % FIT) using drip irrigation. The crop evapotranspiration was determined using the soil water budget method while the grain yields were measured at harvest. Soil samples were collected at harvest and analyzed for chemical and physical properties. The relationship between maize yield, soil properties and Ky were determined using correlation analysis. Results from the study showed that the sensitivity of maize crops to water stress was greater than one 1 but reduced in soil treated with biochar compared to those without biochar. Ky under the unamended plot was 1.64 and reduced to 1.52 when applied with biochar. Ky was 1.45 in soil amended with only inorganic fertilizer and reduced to 1.27 when co-applied with biochar. Biochar decreased water depletion by maize, with the highest reduction in soil water depletion occurring in treatments that received the least water. A significant (P < 0.05) correlation between Ky and the soil properties showed that the soil chemical (Nitrogen, Phosphorus and Potassium) properties are primarily responsible for the reduced sensitivity of maize yield to water stress.

Keywords: Soil amendments; Soil water depletion; Soil water stress; Crop water use; Soil properties; Yield response factor (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422003481
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003481

DOI: 10.1016/j.agwat.2022.107801

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003481