Improving predictions of evapotranspiration by integrating multi-source observations and land surface model
Xinlei He,
Shaomin Liu,
Tongren Xu,
Kailiang Yu,
Pierre Gentine,
Zhe Zhang,
Ziwei Xu,
Dandan Jiao and
Dongxing Wu
Agricultural Water Management, 2022, vol. 272, issue C
Abstract:
Accurate estimation of evapotranspiration (ET) is essential for understanding terrestrial energy, water, and carbon cycles. This study proposes a hybrid model integrating in-situ and remote sensing-derived soil moisture (SM) observations and remote sensing leaf area index (LAI) with the Noah-MP model. The ensemble Kalman filter (EnKF) approach updates the leaf biomass and specific leaf area (SLA) by assimilating the remotely sensed LAI. A machine learning (ML) surrogate model is used to integrate multi-site SM profile observations and remote sensing SM products to estimate the three-layer SM. An iterative coupling of two parts implements the hybrid model: optimization of leaf biomass and SLA by assimilation of LAI in the Noah-MP model and simulation of three-layer SM in the ML surrogate model. The performance of the hybrid model is evaluated in the Heihe River Basin (HRB) in northwest China. The estimated ET from the hybrid model is compared with observations from the large aperture scintillometer (LAS) at the Arou, Daman, and Sidaoqiao sites and up-scaled watershed ET over the HRB. The findings indicate that the hybrid model performs well in vegetated areas but underestimates ET in extreme arid deserts. The three-site unbiased root mean squared errors (ubRMSEs) of ET estimates from the hybrid model are 29.06%, 42.76%, and 50.00% lower than Noah-MP at the Arou, Daman, and Sidaoqiao sites, respectively. The coupling of data assimilation (DA) and ML methods can improve vegetation dynamics and SM transport estimation in the Noah-MP model. The hybrid model can take advantage of DA and ML methods and integrate multi-source observations to improve the accuracy of ET estimation. The results also indicate that the ET predictions are more sensitive to root zone SM (0–40 cm) over croplands, grasslands, and shrublands, while the ET simulations are more affected by deeper rooting depths SM (0–100 cm) and groundwater over forests.
Keywords: Hybrid model; Multi-source observations; Ensemble Kalman filter method; Machine learning method; Heihe River Basin (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422003742
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:272:y:2022:i:c:s0378377422003742
DOI: 10.1016/j.agwat.2022.107827
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().