Morpho-physiological response of barley to assess genotypic differences of salinity tolerance under hyper arid climate
M. Iftikhar Hussain,
Abdullah J. Al-Dakheel,
Usman Khalid Chaudhry,
Muhammad Imran Khan,
Haifa Abdulaziz Sakit ALHaithloul,
Suliman Mohammed Alghanem and
Abdullah Alaklabi
Agricultural Water Management, 2022, vol. 272, issue C
Abstract:
Salt stress is major constraint affecting agricultural productivity, land degradation and has become a serious threat for global food security. The selection and evaluation of barley genotypes that can tolerate salt stress are the main components for rehabilitation of salt-degraded marginal soils in arid and semi-arid countries, including Arabian Peninsula. A field experiment was conducted to evaluate the response of six barley genotypes (62/3 A, 76/2 A, N2–35, N2–4, Badia, Furat1) at three salinity levels (0, 7 and 14 dS m−1) to evaluate the response of genotypes based on morpho-physiological characteristics and nutrients uptake. The grain yield stability (static environmental variance (S2) and dynamic Wricke’s ecovalence (W2), and harvest index (HI) was also estimated. The higher salinity treatment (14 dS m−1) resulted in devastating reduction in barley yield traits. Additionally, salt treatments (7 dS m−1, 14 dS m−1), genotypes and interaction between (genotypes ∗ salinity levels) exhibited significant (p < 0.001) differences. The genotype N2–35 exhibited highest plant biomass, grains per spike and grains per plant, whereas the genotype 76/2 A resulted in lowest number of grains per spike and grains per plant. The highest K+ was noticed from Badia genotype, whereas the 62/3 A genotype failed to accumulate K+. The genotype, Furat1, showed substantial amount of Cl- and Na+ contents followed by Badia. Except Badia and N2–35, all other genotypes showed higher Δ13C values. The Badia genotype also showed higher iWUE compared to all other genotypes. Contrarily the genotypes N2–4 and 62/3 A exhibited maximum reduction in iWUE. The δ15N trait increased following salinity treatment. Genotypes N2–35 and N2–4 showed highest δ15N while 62/3 A and 76/2 A exhibit lowest values for δ15N. The study exhibited that the genotype N2–35 was tolerant to salinity stress whereas the response of Furat1 genotype suggested salt susceptible behaviour. It was concluded that salt tolerant genotype can be cultivated in saline marginal soils for food security and help in rehabilitation of marginal lands.
Keywords: Carbon isotopes discrimination; Hordeum vulgare; Genotypes; Irrigation; Isotope ecology; Salinity; Water-use efficiency; Yield (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422003791
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:272:y:2022:i:c:s0378377422003791
DOI: 10.1016/j.agwat.2022.107832
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().