EconPapers    
Economics at your fingertips  
 

Rice ponding date detection in Australia using Sentinel-2 and Planet Fusion imagery

James Brinkhoff, Rasmus Houborg and Brian W. Dunn

Agricultural Water Management, 2022, vol. 273, issue C

Abstract: Rice is unique, in that yields are maximized when it is grown under ponded (or flooded) conditions. This however has implications for water use (an important consideration in water-scarce environments) and greenhouse gas emissions. This work aimed to provide precise predictions of the date when irrigated rice fields were ponded, on a per-field basis. Models were developed using Sentinel-2 data (with the advantage of inclusion of water-sensitive shortwave infrared bands) and Planet Fusion data (which provides daily, temporally consistent, cross-calibrated, gap-free data). Models were trained with data from both commercial farms and research sites in New South Wales, Australia, and over four growing seasons (harvest in 2018–2021). Predictions were tested on the 2022 harvest season, which included a variety of sowing and water management strategies. A time-series method was developed to provide models with features including satellite observations from before and after the date being classified (as ponded or non-ponded). Logistic regression models using time-series features produced mean absolute errors for ponding date prediction of 4.9 days using Sentinel-2 data, and 4.3 days using Planet Fusion data. The temporal frequency of the Planet Fusion data compensated for the lack of spectral bands relative to Sentinel-2.

Keywords: Rice; Irrigation management; Remote sensing; Time-series; Logistic regression (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422004541
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:273:y:2022:i:c:s0378377422004541

DOI: 10.1016/j.agwat.2022.107907

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:273:y:2022:i:c:s0378377422004541