Distinct roles for soil bacterial and fungal communities associated with the availability of carbon and phosphorus under aerated drip irrigation
Jinjin Zhu,
Wenquan Niu,
Zhenhua Zhang,
Kadambot H.M. Siddique,
Dan Sun, and
Runya Yang
Agricultural Water Management, 2022, vol. 274, issue C
Abstract:
Soil bacteria and fungi play key roles in organic matter decomposition and nutrient turnover. Aerated drip irrigation (ADI) is beneficial for improving soil nutrients but its effects on bacterial and fungal communities are less known. In this study, a two-season ADI field experiment comprising three dissolved oxygen concentrations (10, 15, and 20 mg·L–1, referred to as A1, A2, and A3) and a control treatment (groundwater without aerated, CK) was conducted in a tomato plantation in Shandong, China. Soil bacterial and fungal communities were examined using high-throughput sequencing targeting 16 S rRNA and ITS genes, respectively. The ADI treatments increased fungal community diversity but did not significantly affect bacterial community diversity. However, bacterial communities were more connected within the module, with more stable network structures in the ADI treatments. In contrast, fungal networks had lower modularity values and a significant negative correlation with soil available phosphorus (AP). The ADI treatments increased the bacterial phylum Gemmatimonadetes and Firmicutes and a few aerobic taxa and strongly enriched the fungal phylum Mortierellomycota and phosphorus-dissolving taxa (Humicola, Mycothermus, and Myceliophthora). In addition, the A2 treatment enhanced functional groups related to carbon and phosphorus cycling while decreasing Plant Pathogen functional groups. The most important environmental factors affecting bacterial and fungal communities were soil organic carbon (SOC) and AP, respectively. Structural equation modeling (SEM) demonstrated that ADI directly affected soil bacterial and fungal communities and indirectly promoted SOC, AP content, and tomato yield. Overall, our findings highlight the importance of bacterial and fungal taxonomic communities, co-occurrence networks, and functions related to regulating soil carbon and phosphorus availability, providing novel evidence for the application of ADI to improve soil fertility and crop productivity.
Keywords: Aerated drip irrigation; Soil bacteria and fungi; Taxonomic composition; Co-occurrence networks; Functions; Soil carbon and phosphorus availability (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422004723
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:274:y:2022:i:c:s0378377422004723
DOI: 10.1016/j.agwat.2022.107925
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().