Remote sensing-based evapotranspiration modeling using geeSEBAL for sugarcane irrigation management in Brazil
I.Z. Gonçalves,
A. Ruhoff,
L. Laipelt,
R.C. Bispo,
F.B.T. Hernandez,
C.M.U. Neale,
A.H.C. Teixeira and
F.R. Marin
Agricultural Water Management, 2022, vol. 274, issue C
Abstract:
Irrigated agriculture requires the implementation of innovative tools to improve irrigation water management and accurate estimation of actual evapotranspiration (ETa) such as remote sensing-based methodology. This study aimed to evaluate the irrigation management and estimating evapotranspiration through the geeSEBAL, a new tool for automated estimation of ETa based on the Surface Energy Balance Algorithm for Land (SEBAL) and a simplified version of the Calibration using Inverse Modeling at Extreme Conditions (CIMEC) process for the endmembers selection, implemented into the Google Earth Engine (GEE) environment. GeeSEBAL has not been used yet in Brazil for irrigation proposes, and in this research, it was applied to estimate ETa using Landsat images and ERA5-Land as meteorological inputs in the largest sugarcane producing region of the world in Brazil for two ratoon seasons by comparing daily ETa with values obtained from eddy covariance (EC) data, Energy balance components using geeSEBAL were consistent with the measured data and daily ETa presenting RMSE of 0.46 mm with R2 = 0.97. Modeled ETa and Kc were similar for the two seasons, although somewhat overestimated for the fifth ratoon when compared to the EC data, mainly during high atmospheric demand (crop mid-stage). Still, the Kc values were similar to the standard values available in the literature and measured flux tower data for the two ratoons seasons. With ETa from geeSEBAL it was possible to identify water stress over the growing seasons using the remote sensing-based soil water balance, which occurred mainly during the phase after the crop reached the peak Kc (full cover stage) when the irrigation depth required was very high. This analysis showed that geeSEBAL has a significant potential for assessment of ETa for irrigation monitoring and management, even in missing climate data areas, allowing important advances in water resources management for sugarcane and other irrigated crops at field or regional scales.
Keywords: Water productivity; Landsat images; ERA5; Eddy covariance (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422005121
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:274:y:2022:i:c:s0378377422005121
DOI: 10.1016/j.agwat.2022.107965
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().