EconPapers    
Economics at your fingertips  
 

Two source energy balance maize evapotranspiration estimates using close-canopy mobile infrared sensors and upscaling methods under variable water stress conditions

Abia Katimbo, Daran R. Rudnick, Wei-zhen Liang, Kendall C. DeJonge, Tsz Him Lo, Trenton E. Franz, Yufeng Ge, Xin Qiao, Isa Kabenge, Hope Njuki Nakabuye and Jiaming Duan

Agricultural Water Management, 2022, vol. 274, issue C

Abstract: Mobile infrared thermometers (IRTs) mounted on moving platforms provide one-time-of-day radiometric measurements (Tr), which can be used to calculate instantaneous actual evapotranspiration (ETa) using the two-source energy balance (TSEB) model. However, irrigation scheduling decisions utilize daily ETa estimates, hence the need for time scaling. This study evaluated different upscaling methods to calculate daily maize ETa using one-time-of day Tr under varying water stress conditions. Mobile IRTs were mounted on a high clearance mobile sensing platform and collected Tr in remote locations under full, deficit and rainfed conditions. Seven scaling methods via two pathways were employed to obtain daily ETa. First pathway was scaling one-time-of-day Tr (SC) whereas the second pathway involved use of six upscaling methods of instantaneous ETa including: original and modified evaporative factor ((EF)o, (EF)m) as well as crop coefficient ((Kc)o, (Kc)m), direct canopy resistance (Direct- rc), and solar radiation ratio (Rn/Rs); and all were compared to a neutron-based soil water balance (SWB) determined ETa. From the results, SC outperformed other methods in comparison to SWB ETa across all the selected treatments with smaller discrepancies and lower RMSE (0.9–1.7 mm d−1 vs. 0.7–4.3 mm d−1 for other methods). Furthermore, methods including SC, (EF)o, (EF)m, and Rn/Rs had their daily average ETa values in close agreement to SWB ETa with mean ETa differences ranging between 0.2 and 1.6 mm d−1. Overall, SC method performed better in fully irrigated maize (r2 = 0.52, RMSE = 0.9 mm d−1) than in deficit irrigated maize ( r2 = 0.48, RMSE = 1.4 mm d−1) but worst in rainfed maize (r2 = 0.16, RMSE = 1.7 mm d−1). This implies that SC is more suited for irrigated rather than rainfed settings. Importantly, the choice of any method depends on data requirements, irrigation water management strategy, and ETa estimation accuracy.

Keywords: Mobile infrared thermometers; Moving platforms; Irrigation scheduling; Time scaling methods; Radiometric temperature; Soil water balance (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422005194
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:274:y:2022:i:c:s0378377422005194

DOI: 10.1016/j.agwat.2022.107972

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:274:y:2022:i:c:s0378377422005194