EconPapers    
Economics at your fingertips  
 

Co-regulation of temperature and moisture in the irrigated agricultural ecosystem productivity

Chunyu Wang, Sien Li, Mousong Wu, Wenxin Zhang, Zhenyu Guo, Siyu Huang and Danni Yang

Agricultural Water Management, 2023, vol. 275, issue C

Abstract: Agroecosystem photosynthesis is key to coping with global climate change. In farmland where human activities are highly involved, the interaction between environmental factors and their influences on gross primary productivity (GPP) are insufficiently understood. Particularly, the irrigation and mulching in water-saving agriculture can alter the crop responses to environmental change. Based on eddy covariance measurements of maize fields under mulched drip irrigation (DM) and mulched border irrigation (BM) in arid areas of Northwest China from 2014 to 2018, we systematically studied the interaction between multiple environmental factors and their independent effects on GPP using structural equation modeling, partial correlation coefficient and decoupling analysis by bins. The top three factors exerting the largest total effects on the GPP were soil temperature (Ts), canopy temperature (Tc) and vapor pressure deficit (VPD), among which Ts (0.75) and Tc (0.66) had the largest total effect on GPP under DM and BM, respectively. The independent effects of Ts, soil water content (SWC) and VPD on GPP were different under the two irrigation methods. SWC after excluding the influence of Ts showed a negative effect on GPP under DM (−1.24 g Cm−2d−1), while a positive effect under BM (0.02 g Cm−2d−1). By contrast, SWC after excluding the influence of VPD showed a positive effect on GPP under DM (0.59 g Cm−2d−1), while a negative effect under BM (−0.05 g Cm−2d−1). Interestingly, higher Ts, lower SWC and higher VPD had the potential to increase GPP under the two irrigation methods. We also found that the total effects of irrigation and VPD as well as the indirect effects of environmental factors on GPP should not be ignored. Our study will provide important reference for dealing with the effect of high temperature and drought stress on agro-ecosystem GPP and evaluating the response of vegetation to environmental factors.

Keywords: Gross primary productivity; Soil temperature; Soil water content; Vapor pressure deficit; Decoupling (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422005637
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:275:y:2023:i:c:s0378377422005637

DOI: 10.1016/j.agwat.2022.108016

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:275:y:2023:i:c:s0378377422005637