EconPapers    
Economics at your fingertips  
 

An improved model to simulate soil water and heat: A case study for drip-irrigated tomato grown in a greenhouse

Xuewen Gong, Xiaoming Li, Yu Li, Guokui Bo, Rangjian Qiu, Zongdong Huang, Shikai Gao and Shunsheng Wang

Agricultural Water Management, 2023, vol. 277, issue C

Abstract: Soil physical, chemical, and biological processes are influenced by soil water and heat conditions, which greatly depend on the crop root systems in different soil layers. Hence, understanding root distribution, soil water and heat dynamics is essential to improve water and nutrient use efficiency. A case study of tomato grown in a greenhouse with drip irrigation was conducted to test an improved two-dimensional (2D) model, namely UZflow-2D, for simulating the soil water and heat dynamics. The performance of UZflow-2D model was also compared with the well-known Hydrus-2D model. A 2D root length density (RLD) function, as a main subsidiary model of UZflow-2D, was proposed by investigating the roots distribution from lateral and radial latitudes at the four main growth stages (seedling, flowering, fruit-setting, and picking). Experimental data in 2015 was used to calibrate the parameters of UZflow-2D and Hydrus-2D models, and validated using the data of 2016. Results showed that more than 70% of the total RLD was concentrated in soil layers of 0–20 cm during the seedling, 0–40 cm during the flowering, and 0–60 cm during the fruit-setting and picking stages. The 2D RLD function perform well for locations within and between two rows, with determination coefficients higher than 0.77. Both UZflow-2D and Hydrus-2D models perform well in simulating soil water and soil temperature dynamics, while UZflow-2D model produced improved accuracy in modeling the soil water and heat dynamics within and between two rows of drip-irrigated tomato plants. The overall root mean square error (RMSE) was ∼0.008 cm3 cm−3 for soil water contents, and ∼0.434 °C for soil temperature for UZflow-2D model. However, the overall RMSE was ∼0.012 cm3 cm−3 for soil water contents, and ∼0.504 °C for soil temperature for Hydrus-2D model. Hence, the UZflow-2D model can be served as an alternatively useful tool to simulate water and heat dynamics.

Keywords: Drip irrigation; Greenhouse tomato; Hydrus-2D model; Root length density; Soil water and temperature; UZflow-2D model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422006680
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:277:y:2023:i:c:s0378377422006680

DOI: 10.1016/j.agwat.2022.108121

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:277:y:2023:i:c:s0378377422006680