EconPapers    
Economics at your fingertips  
 

Modeling actual water use under different irrigation regimes at district scale: Application to the FAO-56 dual crop coefficient method

Luis-Enrique Olivera-Guerra, Pierre Laluet, Víctor Altés, Chloé Ollivier, Yann Pageot, Giovanni Paolini, Eric Chavanon, Vincent Rivalland, Gilles Boulet, Josep-Maria Villar and Olivier Merlin

Agricultural Water Management, 2023, vol. 278, issue C

Abstract: The modeling of irrigation in land surface models are generally based on two soil moisture parameters SMthreshold and SMtarget at which irrigation automatically starts and stops, respectively. Typically, both parameters are usually set to optimal values allowing to fill the soil water reservoir with just the estimated right amount and to avoid crop water excess at all times. The point is that agricultural practices greatly vary according to many factors (climatological, crop, soil, technical, human, etc.). To fill the gap, we propose a new calibration method of SMthreshold and SMtarget to represent the irrigation water use in any (optimal, deficit or even over) irrigation regime. The approach is tested using the dual-crop coefficient FAO-56 model implemented at the field scale over an 8100 ha irrigation district in northeastern Spain where the irrigation water use is precisely monitored at the district scale. Both irrigation parameters are first retrieved at monthly scale from the irrigation observations of year 2019. The irrigation simulated by the FAO-56 model is then evaluated against observations at district and weekly scale over 5 years (2017–2021) separately. The performance of the newly calibrated irrigation module is also assessed by comparing it against three other modules with varying configurations including default estimates for SMthreshold and SMtarget. The proposed irrigation module obtains systematically the best performance for each of the 5 years with an overall correlation coefficient of 0.95 ± 0.02 and root-mean square error of 0.27 ± 0.07 hm3/week (0.64 ± 0.17 mm/day). Unlike the three irrigation modules used as benchmark, the new irrigation module is able to reproduce the farmers’ practices throughout the year, and especially, to simulate the actual water use in the deficit and excess irrigation regimes occurring in the study area in spring and summer, respectively.

Keywords: Irrigation module; Irrigation amounts; Data assimilation; Water balance model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377422006667
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:278:y:2023:i:c:s0378377422006667

DOI: 10.1016/j.agwat.2022.108119

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:278:y:2023:i:c:s0378377422006667