EconPapers    
Economics at your fingertips  
 

Assessment of water demands for irrigation using energy balance and satellite data fusion models in cloud computing: A study in the Brazilian semiarid region

Thomás R. Ferreira, Mitchell S. Maguire, Bernardo B. da Silva, Christopher M.U. Neale, Edivaldo A.O. Serrão, Jéssica D. Ferreira, Magna S.B. de Moura, Carlos A.C. dos Santos, Madson T. Silva, Lineu N. Rodrigues and Herica F.S. Carvalho

Agricultural Water Management, 2023, vol. 281, issue C

Abstract: Assessment of irrigation in arid and semiarid regions is imperative to ensure the sustainable use of limited water resources and guarantee food production. Therefore, this study aimed to assess actual evapotranspiration – ETa derived from the Surface Energy Balance Algorithm for Land – SEBAL model with and without satellite image fusion as input of a soil water balance in a pilot area of sugarcane in the semiarid region of Brazil. A fusion of Landsat sensors’ and Moderate Resolution Imaging Spectroradiometer – MODIS’ images was completed through a Spatial and Temporal Adaptive Reflectance Fusion Model – STARFM script developed using cloud computing, and its performance in estimating key variables for the radiation balance was evaluated. ETa and irrigation were daily estimated between June, 2015 and May, 2016 by combining STARFM with SEBAL and evaluated according to the Bowen ratio technique and irrigation data. In addition, one-minute surface meteorological elements at the satellite overpass times were used. STARFM performed well with RMSE of 17.00 W m−2, 2.28 K, 0.07, and 0.01 for Rn, Ts, NDVI, and albedo, respectively. The metrics employed to evaluate ETa estimates indicated that the SEBAL+STARFM has low mean errors (PBIAS = −2.75% and RMSE = 0.97 mm d−1 and 16.66 mm month−1) and high coefficient of determination (0.87 for daily ETa–ET24, and 0.91 for monthly ETa), in comparison with SEBAL using Landsat-only images (PBIAS = −5.25%, RMSE = 0.97 mm d−1 and 17.66 mm month−1, r² = 0.92). Adding fused images resulted in a better fit of the estimated cumulative ET24 curve to the measured ET24. The water balance indicated that the cultivated cane suffered water stress, which was better represented by estimates using the ET24 curve with the addition of fused images than Landsat images alone. Although this increase in temporal resolution of the estimated ET24 data indicated a greater water consumption, it informs a quantity that would be sufficient to meet the water demand of the crops.

Keywords: Remote sensing; Google earth engine; Evapotranspiration; Water right (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423001257
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:281:y:2023:i:c:s0378377423001257

DOI: 10.1016/j.agwat.2023.108260

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:281:y:2023:i:c:s0378377423001257