Agricultural water-saving potentials with water footprint benchmarking under different tillage practices for crop production in an irrigation district
Jie Gao,
La Zhuo,
Ximing Duan and
Pute Wu
Agricultural Water Management, 2023, vol. 282, issue C
Abstract:
The water footprint (WF) of crop production is a measure of the volumes of blue water (irrigation water) and green water (effective precipitation) consumed during crop growth. Setting the WF benchmarks of crop production in an irrigation district, exploring the optimal tillage practices, and clearly specifying blue and green water-saving potentials (WSPs) are essential for efficient utilization and reasonable allocation of agricultural water resources. However, related studies disregarded the WF benchmark setting according to tillage practices and the corresponding WSPs at the irrigation district scale. Meanwhile, the evaluation of WSP is limited to blue water. Considering summer maize and winter wheat grown in Baojixia Irrigation District (BID) of Shaanxi Province in China as the study case, this study aims to evaluate the gross irrigation WSP, actual blue and green WSPs based on crop WF simulation and WF benchmark setting for the “best” tillage practice. Eighteen water-saving tillage practice scenarios were set considering three irrigation techniques, three irrigation strategies, and two mulching practices. Results show that crop responses to different tillage practices differ. Maize WF has low sensitivity whereas wheat WF shows a significant difference following a change in irrigation techniques. In the practice under 40% deficit irrigation with no mulching, there is the highest actual WSPs, but at the cost of at least 57% reduction in crop yield. Whereas the practice of 20% deficit irrigation, furrow irrigation, and mulching has no yield reduction and relatively low WF, which can save 20% blue water and 8–12% green water in the BID, which is the optimal balance point between the yield and water consumption of the two crops. From the perspective of crop WF, this study quantified the agricultural WSPs of different water resources, and formulated a method for evaluating agricultural WSPs based on set WF benchmarks, to provide reference for building a water-saving culture, and sustainable development.
Keywords: Irrigation techniques; Irrigation strategies; Water footprint; Benchmarking; Water-saving potential (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423001397
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:282:y:2023:i:c:s0378377423001397
DOI: 10.1016/j.agwat.2023.108274
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().