Forecasting vapor pressure deficit for agricultural water management using machine learning in semi-arid environments
Ahmed Elbeltagi,
Aman Srivastava,
Jinsong Deng,
Zhibin Li,
Ali Raza,
Leena Khadke,
Zhoulu Yu and
Mustafa El-Rawy
Agricultural Water Management, 2023, vol. 283, issue C
Abstract:
Precise evapotranspiration (ET) estimation is critical for agricultural water management, particularly in water-stressed developing countries. Vapor Pressure Deficit is one of the ET parameters that has a significant impact on its calculation (VPD). This paper forecasts VPD using ensemble learning-based modeling in eight different regions (Dakahliyah, Gharbiyah, Kafr Elsheikh, Dumyat, Port Said, Ismailia, Sharqiyah, and Qalubiyah) in Egypt. In this study, six machine learning algorithms were used: Linear Regression (LR), Additive regression trees (ART), Random SubSpace (RSS), Random Forest (RF), Reduced Error Pruning Tree (REPTree), and Quinlan's M5 algorithm (M5P). Monthly vapor pressure data were obtained from the Japanese 55-year Reanalysis JRA-55 from 1958 to 2021. The dateset has been divided into two segments: the training stage (1958–2005) and the testing stage (2006–2021). Five statistical measures were used to evaluate the model performances: Correlation Coefficient (CC), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative absolute error (RAE), and Root Relative Squared Error (RRSE), across both training and testing stages. RF model outperformed the rest of the models [CC = 0.9694; MAE = 0.0967; RMSE = 0.1252; RAE (%) = 21.7297 and RRSE (%) = 24.0356], followed closely by REPTree and RSS models. On the other hand, M5P model performance remained moderate and both LR and AR model were the worst. During the testing stage, RF outperformed the rest of the models in terms of (which statistic), followed closely by REPTree and RSS models. On the other hand, M5P performance remained moderate and both LR and AR models were the worst. This study recommended using the RF model for future hydro-climatological studies in general, and vapor pressure deficit modeling and prediction in particular. This study enables future magnitudes to be predicted, alerting the authorities and administrators involved to focus their policy-making on more specific pathways toward climate adaptation.
Keywords: Agricultural Water Management; Meteorological Data; Machine Learning, Random Subspace; REPTree; Partial auto-correlation function (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423001671
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:283:y:2023:i:c:s0378377423001671
DOI: 10.1016/j.agwat.2023.108302
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().