The impact of nitrogen treatment and short-term weather forecast data in irrigation scheduling of corn and cotton on water and nutrient use efficiency in humid climates
Laljeet Sangha,
Julie Shortridge and
William Frame
Agricultural Water Management, 2023, vol. 283, issue C
Abstract:
Irrigation adoption is increasing in humid regions to offset short-term dry periods, especially at the peak of the growing season. Low soil moisture at the peak growth stage impacts yield and limits the plant's capacity to uptake nitrogen, resulting in low nutrient use efficiency (NUE). However, heavy rainfall on fields with supplemental irrigation may result in waterlogging and surface runoff, leading to nutrient leaching and runoff. This ultimately can lead to lower NUE, poor water use efficiency (WUE), reduced yields, and water quality impacts. This makes irrigation management challenging in humid regions, as irrigators must avoid both limited and excess water conditions. This field study aimed to develop and test an irrigation management methodology using real-time soil water availability, crop physiological status, water needs, and short-term weather forecasts information from National Weather Service. A rule-based approach determined by soil moisture depletion and short-term weather forecasts was used to trigger irrigation to avoid both stress and excess water conditions. This method was tested in two years of field trials in Suffolk, Virginia to quantify its impacts on yield, NUE, WUE, and financial returns in corn and cotton under four nitrogen application treatments. The relative impact of irrigation and nitrogen treatment was quantified using mixed effects models. The yield, NUE and WUE were impacted by both precipitation and irrigation patterns. Significantly different yields were observed under Nrates treatments for both corn and cotton. The trends of economic returns were similar to yield and were significantly different between recent and historic prices. This study also discusses the impacts of reliability and practical challenges of using Weather Informed irrigation in a field study.
Keywords: Irrigation Scheduling; Weather forecasts; Nitrogen use efficiency; Water use efficiency; Humid; Nitrogen uptake (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423001798
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:283:y:2023:i:c:s0378377423001798
DOI: 10.1016/j.agwat.2023.108314
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().