A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data
Shima Amani and
Hossein Shafizadeh-Moghadam
Agricultural Water Management, 2023, vol. 284, issue C
Abstract:
In the era of water scarcity and severe droughts, the accurate estimation of evapotranspiration (ET) is crucial for the efficient management of water resources, understanding hydrological and ecological processes, and comprehending the relationships between the atmosphere, hydrosphere, and biosphere. ET is a complex phenomenon influenced by a set of biophysical and environmental factors. Its estimation becomes more complicated in heterogeneous environments, demanding detailed data and accurate model calibration. Combining remote sensing imagery and machine learning (ML) models has provided a considerable capacity for estimating ET, which relaxes a number of assumptions and requires less data than traditional approaches. Satellite imagery provides influential variables for ET estimation using ML models. Nevertheless, a growing number of ML models and emerging satellite imagery has opened up a wide and complex potential before researchers. While previous studies have reviewed physical-based methods for ET estimation, this paper offers a recent decade review of the progress, challenges, and opportunities provided by the RS and ML models for the ET estimation and future outlook.
Keywords: Flux towers; Land surface temperature; Surface energy balance; Water resources management (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423001890
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:284:y:2023:i:c:s0378377423001890
DOI: 10.1016/j.agwat.2023.108324
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().