EconPapers    
Economics at your fingertips  
 

A simulation-based multi-objective two-level optimization decision-making approach for supporting balanced irrigation water management

Chenglong Zhang, Xuemin Li, Gang Li, Xiaoqin Dai and Zailin Huo

Agricultural Water Management, 2023, vol. 284, issue C

Abstract: In this study, a simulation-based multi-objective two-level optimization decision-making approach is developed for optimal irrigation water allocation, improving irrigation water productivity and controlling regional accumulated salts. Techniques of multi-objective programming, two-level programming and simulation model of water and salt physical movement process are incorporated into the modeling framework. The simulated processes are parameterized and calibrated with field experimental data while the optimization model is used to generate optimal solutions though predefined objectives and the associated constraints. This model is applied to a case study on irrigation water allocation in the Jiefangzha Irrigation Subarea in Hetao Irrigation District, Northwest China. Firstly, the study area is delineated into several homogeneous irrigation decision-making units (IDMUs) for better characterizing their spatial variability because it’s spatially heterogeneous. Afterwards, decomposition-coordination algorithm is introduced to solve such an integrated simulation-based multi-objective two-level optimization model. Finally, optimal solutions of irrigation water allocation for different crops during crop growth periods in different IDMUs can be obtained for supporting sustainable strategies of irrigation. The results can achieve balanced tradeoffs between different stakeholders (i.e., the upper-level decision-makers and the lower-level farmers) and between conflicting economic objectives and environmental objectives. Moreover, optimal solutions have a slight increase in economic returns over the baseline scenario (i.e., status quo), but the irrigation water productivity is increased by nearly 60% due to less irrigation water used. Regional accumulated salts can be controlled because the soil salinity is constrained within the predetermined salt accumulation constraint. Therefore, these findings can provide evidence for efficient use of irrigation water resources and further support of sustainable irrigated agriculture.

Keywords: Irrigation decision-making unit; Different stakeholders; Two-level programming; Decomposition and coordination algorithm; Simulated process; Irrigated agriculture (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423002093
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:284:y:2023:i:c:s0378377423002093

DOI: 10.1016/j.agwat.2023.108344

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:284:y:2023:i:c:s0378377423002093