High-low seedbed cultivation drives the efficient utilization of key production resources and the improvement of wheat productivity in the North China Plain
Junming Liu,
Zhuanyun Si,
Lifeng Wu,
Xiaojun Shen,
Yang Gao and
Aiwang Duan
Agricultural Water Management, 2023, vol. 285, issue C
Abstract:
High-low seedbed cultivation (HLSC) is a key technique now used by smallholder and large farmers to increase the land utilization rate of wheat production in the North China Plain (NCP). However, little information is available on its superiority in crop productivity, resource utilization efficiency, and net return in comparison with flat cultivation (FC). A field experiment was conducted in the NCP in the 2020–2021 and 2021–2022 wheat seasons to determine whether HLSC would increase crop productivity, evapotranspiration (ET), intercepted photosynthetically active radiation (IPAR), crop nitrogen uptake and resource use efficiency. Two treatments were established, i.e., FC and HLSC, respectively. The results showed that HLSC significantly increased tiller development, leaf area index (LAI), and aboveground biomass compared with FC. Although HLSC did not increase ET relative to FC (P > 0.05), it increased IPAR by 5.5–6.6 % and grain nitrogen uptake by 12.1–12.6 % (P < 0.05). Pearson correlation analysis indicated that grain yield and biomass yield were regulated by the resource capture of wheat. Therefore, HLSC significantly increased grain yield by 14.5–18.3 % and net return by 45.4–59.3 % and enhanced the efficient use of resources by 13.2–15.6 % in water, 8.5–11.1 % in radiation, and 14.5–18.3 % in nitrogen compared with FC. HLSC is a promising planting system for improving crop productivity and resource use efficiency.
Keywords: Cultivation pattern; High-low seedbed cultivation; Crop productivity; Resource use efficiency (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423002226
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:285:y:2023:i:c:s0378377423002226
DOI: 10.1016/j.agwat.2023.108357
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().