EconPapers    
Economics at your fingertips  
 

Improving water use efficiency in vertical farming: Effects of growing systems, far-red radiation and planting density on lettuce cultivation

Laura Carotti, Alessandro Pistillo, Ilaria Zauli, Davide Meneghello, Michael Martin, Giuseppina Pennisi, Giorgio Gianquinto and Francesco Orsini

Agricultural Water Management, 2023, vol. 285, issue C

Abstract: Vertical farms (VFs) are innovative urban production facilities consisting of multi-level indoor systems equipped with artificial lighting in which all the environmental conditions are controlled independently from the external climate. VFs are generally provided with a closed loop fertigation system to optimize the use of water and nutrients. The objective of this study, performed within an experimental VF at the University of Bologna, was to quantify the water use efficiency (WUE, ratio between plant fresh weight and the volume of water used) for a lettuce (Lactuca sativa L.) growth cycle obtained in two different growing systems: an ebb-and-flow substrate culture and a high pressure aeroponic system. Considering the total water consumed (water used for irrigation and climate management), WUE of ebb-and-flow and aeroponics was 28.1 and 52.9 g L−1 H2O, respectively. During the growing cycle, the contribution generated by the recovery of internal air moisture from the heating, ventilation and air conditioning (HVAC) system, was quantified. Indeed, by recovering water from the dehumidifier, water use decreases dramatically (by 67 %), while WUE increased by 206 %. Further improvement of WUE in the ebb-and-flow system was obtained through ameliorated crop management strategies, in particular, by increasing planting densities (e.g., 153, 270 and 733 plants m−2) and by optimizing the light spectrum used for plant growth (e.g., adjusting the amount of far-red radiation in the spectrum). Strategies for efficient use of water in high-tech urban indoor growing systems are therefore proposed.

Keywords: Plant factories with artificial lighting (PFALs); Aeroponics; Ebb-and-flow; Closed-loop systems; Circularity (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423002305
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:285:y:2023:i:c:s0378377423002305

DOI: 10.1016/j.agwat.2023.108365

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-05
Handle: RePEc:eee:agiwat:v:285:y:2023:i:c:s0378377423002305