EconPapers    
Economics at your fingertips  
 

Quantifying water productivity and nitrogen uptake of maize under water and nitrogen stress in arid Northwest China

Junjun Ran, Hui Ran, Longfei Ma, Stewart A. Jennings, Tinggao Yu, Xin Deng, Ning Yao and Xiaotao Hu

Agricultural Water Management, 2023, vol. 285, issue C

Abstract: Water and nitrogen (N) are critical determinants of crop water productivity (WP) and N uptake (Nuptake), and are also key factors in crop modelling. Through a two-year field experiment with three irrigation levels (full irrigation (W1), moderate water stress (W0.75), and severe water stress (W0.5)), three N application rates (150, 75, and 0 kg N ha−1, i.e., N150, N75, and N0) and three replications for each treatment in Northwest China, we quantified the effects of water and N stress on the growth, yield, and water and N use efficiency (WP and NUE) of hybrid seed maize (Zea mays L. cv. Tianruifeng). Furthermore, nonlinear dynamic water productivity (WP) models and water (ET)-based Nuptake models were developed. The results showed that water stress had a larger impact than N stress on the growth and yield of maize, with water stress reducing yield (Y), final aboveground biomass (B), and N uptake by 36.5%, 15.4%, and 25.7% on average, respectively, and N stress decreasing them by 18.7%, 12.3%, and 13.6%, respectively. Biomass-based water productivity (WPB-ET) and yield-based water productivity (WPY-ET) at the end of the growth period responded differently to water stress but similarly to N stress because of a higher decrease of harvest index (HI) under water stress than under N stress. Specifically, WPY-ET decreased significantly while WPB-ET kept relatively stable as water stress increased. The variation of the measured WP during the growth period presented a single peak trend. The Logistic, Sigmoid, and Linear models showed similar high accuracy for quantifying the relationship between evapotranspiration accumulation and biomass growth. However, the derived WP values from the nonlinear dynamic models were more in line with the single peak variation of the measured WP during the growth period, with the agreement index (d) improved from 0.21 to 0.65–0.75 in comparison to the Linear model. The developed ET-based N accumulation models can quantify N uptake through evapotranspiration. The results can contribute to improving the accuracy of crop modelling under drought stress conditions, and the design of irrigation and N management in arid and semi-arid regions.

Keywords: Plant water relationship; Nitrogen dilution curve; Nitrogen use efficiency; Stress; Water productivity model; Nitrogen uptake model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423002354
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:285:y:2023:i:c:s0378377423002354

DOI: 10.1016/j.agwat.2023.108370

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:285:y:2023:i:c:s0378377423002354