Impact of water deficit and irrigation management on winter wheat yield in China
Ruiyun Zeng,
Xiaomao Lin,
Stephen M. Welch,
Shanshan Yang,
Na Huang,
Gretchen F. Sassenrath and
Fengmei Yao
Agricultural Water Management, 2023, vol. 287, issue C
Abstract:
Increasing scarcity of irrigation water is threatening global winter wheat production and food security. As a major world food crop, irrigation has been pivotal in enhancing the sustainable production of wheat. To ensure food and water security, it is vital to better understand wheat irrigation demands during key growth periods to improve water productivity (WP). Here we combined precipitation and crop water requirements to analyze the impacts of crop water deficit (CWDI) on winter wheat growth periods in the main wheat planting belt of China. The results showed that wheat often had unbalanced water budgets, leading to serious and frequent CWDI in North China Plain (NCP) and Northwestern China (NW), especially during the pre-anthesis periods from greening to jointing and jointing to anthesis. Water deficit during these two phenological periods caused considerable yield reductions of 60% and 55%, respectively, compared to conditions of sufficient water supply. In contrast, in Xinjiang (XJ), extreme and frequent water deficit had a significant negative impact on yield during both pre- and post-anthesis periods. The contribution of different irrigation scenarios to wheat growth and yield was analyzed using the CERES-Wheat model in the Decision Support System for Agrotechnology Transfer (DSSAT). Results indicated that the critical irrigation scenario (CI) was pivotal to alleviating water deficit effects during key growth periods, enhancing wheat growth, and leading to a 51%−92% yield increase compared to rain-fed yields in NCP and NW. Moreover, CI could result in both high WP and high-yield water productivity (HYP) at most CWDI levels (except for extreme). Adding additional irrigation at heading to ensure post-anthesis water requirements were met can simultaneously increase WP and HYP while maintaining higher yields in the extreme water scarcity region XJ. These results imply that winter wheat responses to water deficit vary by growth periods and regions, making optimized irrigation strategies an effective practice to mitigate water shortage and ensure food safety.
Keywords: Winter wheat; Water deficit; Yield; Irrigation; Water productivity; CERES-Wheat model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423002962
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:287:y:2023:i:c:s0378377423002962
DOI: 10.1016/j.agwat.2023.108431
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().