EconPapers    
Economics at your fingertips  
 

Resolving the paradoxes of irrigation efficiency: Irrigated systems accounting analyses depletion-based water conservation for reallocation

Bruce A. Lankford

Agricultural Water Management, 2023, vol. 287, issue C

Abstract: The irrigation efficiency paradox says that raising the efficiency of irrigation systems, thereby reducing return flows, either gives no change in water depletion or it raises depletion via increased evapotranspiration and irrigated area. While this paradox can occur, there are problems associated with it. It eludes precise explanation and characterisation; it can be confused with other irrigation hydrology paradoxes; it is one of several ways irrigated areas increase; it over-emphasises the role of return flows; it relies on other irrigation variables (usually unstated) being uncontrolled; it can be inverted to reduce depletion; and it may mistakenly guide the conservation of water in irrigated systems. Addressing these concerns, a comprehensive predictive model called Irrigated Systems Accounting (ISA) analyses irrigation undergoing water conservation based on accounts for soil-crop evapotranspiration, irrigation efficiency (IE), irrigation practices and infrastructure, withdrawals, depletion, crop production and water reallocation. By using more calculi than current water accounting, ISA; resolves irrigation efficiency paradoxes; predicts how an irrigated system changes its aggregate area and depletion via primary, expansion and reuse zones; and reveals how other non-IE factors drive up area but not necessarily depletion. Compiling all zonal changes reveals how reductions in aggregate depletion can be derived and reallocated to other users without cutting crop production. The paper concludes there are hazards for water policy if irrigation efficiency and depletion are exclusively tied together via imprecise characterisations that draw on water accounting models containing few terms and relationships.

Keywords: Irrigation productivity; Irrigation policy; Rebound paradox; River basin management; Water accounting; Water savings (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423003025
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:287:y:2023:i:c:s0378377423003025

DOI: 10.1016/j.agwat.2023.108437

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:287:y:2023:i:c:s0378377423003025