Long-term effects of plastic mulching on soil structure, organic carbon and yield of rainfed maize
Zihan Liu,
Chenxu Zhao,
Peng Zhang and
ZhiKuan Jia
Agricultural Water Management, 2023, vol. 287, issue C
Abstract:
Plastic film mulching measures are considered effective for conserving water and increasing crop yields. However, the effect of their long-term use on sustaining crop production remain unclear, especially under dryland conditions. A field experiment was conducted for nine years (2013–2021) in the Loess Plateau region of China to evaluate the effects of normal flat sowing with land fully covered by plastic film mulch (P), ridge–furrow planting with 50% coverage with mulch (R), normal flat sowing with land fully covered by biodegradable film mulch (B), and normal flat sowing without mulching (CK). Mulching treatments (P, R, and B) decreased the bulk density of the surface 0.6 m (P < 0.05), and increased the soil porosity (4.1–7.6%). In addition, there was an increase in meso-and macroaggregates contents, as evidenced by wet sieving (54.3–104.9%) and dry sieving (1.1–10.4%) methods. The carbon contents varied with soil depth. Major portion carbon was observed to be retained in the microaggregates under CK (69.5%) while it moved to mesoaggregates (47.8–56.7%) with plastic mulching. Higher soil water contentment were maintained in soils under plastic mulches. Overall improvements in surface 1.0 m soil, where most of the roots reside, were 47, 26 and, 20 mm under P, R, and B, respectively, and 28, 17, and 4 mm in 1.0–2.0 m soil. As a consequence of the maintaining superior better hydro-physical regimes, the grain yield, averaged over 9-years, improved by 4784 (P), 2746 (R), and 2413 kg ha−1 (B) over control. The rainwater was also extracted efficiently by maize. The resultant water use efficiency was 3.2, 2.8, 2.7, and 2.1 kg m3 under P, R, B and CK, respectively. Based on these observations, flat planting plastic film mulching with full surface cover seems a viable option to improve maize productivity under rainfed conditions of the Loess Plateau region.
Keywords: Dryland agriculture; Maize; Soil organic carbon contents; Soil physical properties; Water use efficiency (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423003128
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:287:y:2023:i:c:s0378377423003128
DOI: 10.1016/j.agwat.2023.108447
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().