Partitioning of available energy in canopy and soil surface in croplands with different irrigation methods
Shujing Qin,
Yangzhen Fan,
Sien Li,
Lei Cheng,
Lu Zhang,
Haiyang Xi,
Rangjian Qiu and
Pan Liu
Agricultural Water Management, 2023, vol. 288, issue C
Abstract:
Available energy partitioning in the canopy and at the soil surface under the control of biophysical environment critically influences agricultural water resources management and the regional climate. Drip irrigation technology has been extensively promoted in arid regions and is gradually replacing conventional border irrigation technology, which alters the soil surface hydrothermal conditions and influences the available energy partitioning both in canopy and at the soil surface through biophysical processes. The water-saving effect of drip irrigation has been well studied previously, however, its biophysical controls of available energy partitioning in canopy and soil surface remain insufficiently understood. In this study, we made continuous comparative measurements in two maize fields with border irrigation and drip irrigation during the growing seasons in the period 2014–2018 by simultaneously using eddy covariance systems, sap flow gauges and micro-lysimeters. We found that drip irrigation increased transpiration by 10% and reduced soil evaporation by 40% during the partial canopy period, and these values decreased to 1% and 26%, respectively as the crop developed to complete canopy cover period. However, drip irrigation increased sensible heat fluxes both in canopy and soil surface by 93% and 46%, respectively during the partial canopy period, and by 10% and 231%, respectively during the complete canopy period. The soil moisture drives the discrepancy of available energy partitioning in both canopy and soil surface between two fields. Slow-release effect of the drip irrigation in replacing warm air in soil pores enhanced thermal convection in soil surface, small irrigation volume and small moisture area decreased evaporation loss, and frequent irrigation and sufficient soil moisture induced stable energy interaction between canopy and soil surface, therefore enhancing more sensible heat directed to canopy and soil surface in drip irrigated field. The results enhanced understanding of ecohydrology processes in agroecosystems and provided valuable information for agricultural water resource management.
Keywords: Available energy partitioning; Canopy layer; Soil surface; Border irrigation; Drip irrigation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423003402
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:288:y:2023:i:c:s0378377423003402
DOI: 10.1016/j.agwat.2023.108475
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().