EconPapers    
Economics at your fingertips  
 

Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China

Lei Zhang, Xin Zhao, Ge Zhu, Jun He, Jian Chen, Zhicheng Chen, Seydou Traore, Junguo Liu and Vijay P. Singh

Agricultural Water Management, 2023, vol. 289, issue C

Abstract: The reference evapotranspiration (ETo) pertains to the evapotranspiration of cold-season grasses with an approximate height of 0.12 m or full-covered alfalfa with a height of 0.50 m. Accurate short-term ETo forecasts are indispensable for informed irrigation decisions by relevant departments and individuals. Four deep learning (DL) models, including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Bidirectional LSTM (Bi-LSTM), and Bidirectional GRU (Bi-GRU), as well as two calibrated empirical models (Hargreaves-Samani (HS) and reduced-set Penman–Monteith (RPM)), were used to evaluate the performance of the ETo forecast with a lead time of 1–7 d using temperature forecasts in different climates. The results reveal that the DL models and calibrated HS and RPM models exhibited comparable trends in the ETo forecasts for lead times of 1–7 d. Nonetheless, the DL models consistently outperformed the HS and RPM models across the diverse climatic regions in China. The DL models displayed an average root mean square error (RMSE) and mean absolute error (MAE) of less than 0.887 and 0.633 mm/d, respectively. Moreover, the mean correlation coefficient (R) and accuracy (ACC) exceeded 0.807% and 89.701%, respectively. Among the DL models, the LSTM model demonstrated slightly superior performance in short-term daily ETo forecasts in diverse climates. The LSTM model exhibited RMSE and MAE ranges of 0.563–0.875 mm/d and 0.418–0.626 mm/d, respectively, along with R and ACC ranges of 0.81–0.90 and 89.94–98.11%, respectively. Furthermore, even with an increase in lead time, the DL models continued to exhibit strong predictive capabilities, consistently surpassing the performance of the HS and RPM models. Overall, the trained DL models presented an exceptional ability to forecast the short-term daily ETo in various climatic regions of China. These models require only a few input variables and readily available data, making them highly advantageous for practical applications in ETo forecasting. Such models hold promise for significantly enhancing regional agricultural water-resource planning and management.

Keywords: Deep learning; Reference evapotranspiration forecast; Temperature forecasts; Climate zones; China (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423003633
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003633

DOI: 10.1016/j.agwat.2023.108498

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003633